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ABSTRACT

The POWERS processor is the latest RISC (Reduced Instruction Set Computer)
microprocessor from IBM. It is fabricated using the company’s 22-nm Silicon on Insulator
(SOI) technology with 15 layers of metal, and it has been designed to significantly improve

both single-thread performance and single-core throughput over its predecessor, the
POWERY processor.

The rate of increase in processor frequency enabled by new silicon technology
advancements has decreased dramatically in recent generations, as compared to the historic
trend. This has caused man?/ processor designs in the industry to show very little
improvement in either single-thread or single-core performance, and, instead, larger
numbers of cores are primarily pursued in each generation.

Going against this industry trend, the POWERS8 processor relies on a much improved core
and nest microarchitecture to achieve approximately one-and-a-half times the single-thread
performance and twice the single-core throughput of the POWER7 processor in several
commercial applications. Combined with a 50% increase in the number of cores (from 8 in
the POWER7 processor to 12 in the POWERS processor), the result is a processor that leads
the industry in performance for enterprise workloads.

This paper describes the core microarchitecture innovations made in the POWERS processor
that resulted in these significant performance benefits.

Based on the article by the same title in
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Presenter Commentary Caveat

* This presentation is an intermix of excerpts/figures from the original
whitepaper and presenter commentary.

* The blue borders designate Presenter Commentary (like this slide).

* The presenter’s comments are based solely on the words of the whitepaper,
and do not offer any insider’s insight beyond the content of this whitepaper.

* Please judge the presenter’s thoughts and considerations accordingly.

e Thatis, | don’t know anything more than what we all can read together here.




This paper describes the core microarchitecture innovations made in the
POWERS processor that resulted in these significant performance benefits.

Based on principles adopted in the POWER7 multi-core processor, the
POWERS processor continues to emphasize a balanced multi-core design,
with significant improvements in both single-thread and core performance
and modest increases in the core count per chip.

This contrasts with other multi-core processor designs in the industry today,
for which an increase in the core count is primarily pursued with little
improvement in single-thread or core performance.

In this eighth-generation POWER processor, IBM continues to innovate its
RISC (Reduced Instruction Set Computer) product line by introducing a
twelve-core multi-chip design, with large on-chip eDRAM (embedded
Dynamic Random Access Memory) caches, and high-performance eight-way
multi-threaded cores, implementing the Power ISA (Instruction Set
Architecture) version 2.07.



Our goal for the POWERS processor was to significantly improve the socket-
level, core-level and thread-level performance in each of the multiple
simultaneous multithreading (SMT) modes relative to the POWER7
processor.

This was achieved by keeping the area and power requirement of each
POWERS processor core (POWERS core) sufficiently low to allow twelve such
cores on the processor chip while maintaining its power at the same level as
that of the POWER7Y processor chip.

e Regarding “to significantly improve the socket-level, core-level and thread-
level performance in each of the multiple simultaneous multithreading
(SMT) modes”, because there are as many as 12 CPUcores per socket
(which is a tremendous amount of processing capacity), configuring an LPAR
to reside on only one socket that accesses only local DIMMs — should be a
pervasive POWERS imperative — given its ideal performance advantages.

* Tight&Fat: Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive
the core-level harder with SMT-2/4/8 thread-level workloads on POWERS.

* View/confirm any configuration with output.

e Study&practice using the Dynamic Platform Optimizer (DPO) utility.




An at-a-glance comparison between the POWER7 and the POWERS
processors can be seen in Table 1.

Table 1 Summary of characteristics of the POWER?7
and POWERS processors.

POWER7 POWERS

Cores/chip 8 12
Maximum threads/core 4 8

L1 instruction cache/core 32 KB 32 KB
L1 data cache/core 32 KB 64 KB
L2 cache/core 256 KB 512 KB
L3 cache/core 4 MB 8 MB
Instruction 1ssue/cycle/core 8 10

Instruction completion/cycle/core 6 8




Because of the slowdown in frequency increases from silicon technology,
thread and core performance were improved through micro-architectural
enhancements such as an:

e advanced branch prediction mechanism

* extensive out-of-order execution

* dual pipelines for instruction decode, dispatch, issue, and execution
* advanced eight-way simultaneous multi-threading

* advanced prefetching with more precise application software control over
the prefetching mechanism

* doubled bandwidth throughout the cache and memory hierarchy

* asignificant reduction in memory latency relative to the POWER7 processor
design



Many business analytics applications run in thread-rich configurations, to
exploit the inherent parallelism in these computations. To accommodate
them, the POWERS core doubled the hardware thread parallelism to 8-way
multithreading (referred to as SMTS8).

Because of the doubling in size of the L1 data cache and L2 and L3 caches,
each thread in a POWERS core can have as much resident memory footprint
as a thread in a POWER?7 core.

In fact, it was a design requirement that at each common multithreading
level -- ST (single-thread), SMT2 (two-way multithreading), and SMT4 (four-
way multithreading) -- the individual thread performance on a POWERS core
should be better than on a POWER?7 core.

In single-thread mode, practically all of the core resources can be used by
the single thread.

At the same time, these core resources can efficiently support eight threads
per core. The core can dynamically change mode among ST, SMT2, SMT4, and
SMTS, depending on the number of active threads.



Cloud instances often do not have enough simultaneously active application
threads to utilize all eight hardware threads on the POWERS core.

To instead exploit the parallelism across cloud instances, the POWERS core
can be put in a “split-core mode”, so that four partitions can run on one core
at the same time, with up to two hardware threads per partition.

e This knocked my socks off!! This means a vCPU in SMT-2 mode from four
different LPARs can run concurrently on a given POWERS core.

* In other words, four LPARs can have a vCPU in SMT-2 mode running on the
same POWERS core at the same time.

* For tuning, it means vCPU time-slice fragmentation (the 4t Dimension of
Affinity) could eventually be partially mitigated by use of split-core mode.

e This POWERS capability is also called “micro-threading”.

* | believe this is only offered with PowerKVM, i.e. redbook:IBM PowerKVM
Configuration and Use (sg248231.pdf Oct 2014)




Modern computing environments, and cloud systems in particular, require
extra layers of security and protection in order to deliver a safe and usable
solution to the end user.

For that reason, the POWERS8 processor includes several features that
accelerate cryptographic codes.

In particular, the POWERS core includes a cryptographic unit supporting new
Power ISA instructions for the computation of AES (Advanced Encryption
Standard), SHA (Secure Hash Algorithm), and CRC (Cyclic Redundancy Check)
codes.

The IBM 4764 PCI-X Cryptographic Coprocessor was withdrawn in 2011.
Overview

The IBM PCI-X Cryptographic Coprocessor provides a high-
security, high-throughput cryptographic subsystem. The tamper-
responding hardware is validated at the highest level under the
stringent FIPS PUB (Federal Information Processing Standards
Publication) 140-2 standard. Specialized hardware performs AES,
DES, TDES, RSA, and SHA-1 cryptographic processes, relieving
the main processor from these tasks. The coprocessor design
protects your cryptographic keys and sensitive custom
applications. The software running in the coprocessor can be customized to meet special
requirements.




Big data applications typically have a larger memory footprint and working set
than traditional commercial applications. Correspondingly, compared to the
POWER?7 core, the POWERS core has an L1 data cache that is twice as large,
has twice as many ports from that data cache for higher read/write
throughput, and has four times as many entries in its TLB (Translation
Lookaside Buffer).

In addition, POWERS technology expands the addressing range of memory
accesses using fusion to allow applications to access large data sets more
quickly. As mentioned, the L2 and L3 caches in the POWERS processor are
also twice the size of the corresponding POWER7 processor caches, on a per
core basis.

* The trend of POWER engineering is clearly about keeping more data closer
with 2 times larger L1 data cache and 2 times larger L2 and L3 caches.

* Having twice as many ports from that data cache for higher read/write
throughput means moving more data faster to the 16 execution pipelines.

* Having four times as many entries in its TLB (Translation Lookaside Buffer)
means cache-speed address translations. The TLB is a cache of address
translations. Any TLB miss means searching the hardware page table (HPT;
residing on slower main memory) for the missed address translation.

* Keeping Tight&Fat on one socket substantially improves all of the above.




Optimally exploiting the POWERS core microarchitecture

* The best way to exploit POWERS8/AIX is to first understand your workload with
meaningful POWER/AIX tactical monitoring, i.e. “knowing it by the numbers”.

* Open invitation: Write to me for my script and | promise to assist in this regard.

* Optimal exploitation doesn’t always mean the fastest performance/throughput
* It may mean the most productivity-per-CPUcore or productivity-per-license

* It may mean the quickest responsiveness at the expense of wasted CPUcycles

* Sometimes you just care to understand what your workload is doing better

* Sometimes you want to learn what else can be done to improve a situation

* Other times there is a crisis and you urgently need another willing set-of-eyes
* Try me: Call or write and | will do what | can to help. Really truly, I’'m real.

* | work for IBM Lab Services and Training; we’re a different delivery practice




IBM Systems Lab Services, U.S. Power AIX & LoP Offerings

Stephen Brandenburg — sbranden@us.ibm.com -OR- Linda Hoben — hoben@us.ibm.com -OR- Michael Gordon — mgordo@us.ibm.com

Power Workshops

= Power8 Transition Workshop
= NEW!Power8 Provisioning Assurance

= Power/AIX Monitoring and Tuning (not using NMON)

= Data Center Availability Assessment

Power (VM) Virtual Management

PowerVM HealthCheck / Best Practices Review

PowerVM Customized Training (NPIV, LPM, AMS/AME, etc.)
PowerVM Provisioning Toolkit (with NEW! “Capture” capability)
IBM Proactive Monitoring for AIX & VIOS (“ProMon”)

NEW! PowerVM LPM Automation Tool (from China Labs team)
Power Enterprise Pools Enablement

WPAR (Workload Partition) Implementation and/or Migration

Power (HA) High Availability

= PowerHA Customized Training

= PowerHA SE Implementation / HealthCheck

= PowerHA & Storage Implementation for Disaster Recovery
= PowerHA EE Implementation for DR (incl. Toolkit “Capture”)
Power Performance

Power Virtualization Performance (PowerVP)

Performance Optimization Assessment (POA)

Oracle on AIX Performance Assessment Services

Capacity Planning Tool (CPT) installation & configuration
DB2 on AIX Application Performance Assessment (DB2 BLU)
IBM Tivoli Monitoring (ITM) support for clients with AIX EE

Big Data Enablement

= IBM Power Analytics Infrastructure Enablement

(DNS, DHCP, email, virus-scanning;-file sharing, etc.)

BigData Assessment & JumpstartiServices

Linux on'Power BigData - InfoSphere BigInsights

Linux on Power BigData - InfoSphere InfoStreams

Linux on Power BigData - Executive Infrastructure Review

IBM Power & Storage Planning for Disaster Recovery Workshop

Linux

Power IFL Implementation

Linux on Power (LoP) Customized Training

IBM PowerKVM

Linux on PowerVM

Linux on PowerVM Performance / HealthCheck

Linux Workloads Assessment Workshop

NEW! Linux on Power education offerings to expand customer
training beyond the 1-day jump-starts from ATS

Field Programmable Gate Array (FPGA) Development Platform RPQ

Cloud

Cloud Design Workshop for custom cloud enablement
PowerVC Implementation as a Pre-req to CMO

Cloud Manager with OpenStack (CMO) Implementation

Cloud IT Optimization Assessment

Advanced Cloud on Power Services

IBM Smart Analytics Optimizer Enablement

SAP Landscape Virtualization Management Design & Planning
Workshop

SAP Landscape Virtualization Management Implementation
Other “Open Stack” Consulting Services

SAP HANA on Power

Installation and POC
Health Check Assessment

Security

IBM AIX Security Assessment

LDAP Integration including Pass-through Authentication (PTA)
IBM PowerSC™ Security & Automated Compliance Workshop

PowerSC — Trusted Firewall Workshop (TWR)

PowerSC — Trusted Surveyor Workshop (TS)

AIX Auditing Workshop

AIX Hacking Prevention Workshop

Encrypted File System (EFS) Workshop

Role Based Access Control (RBAC) Workshop/Support Services



IBM Systems Lab Services & Training - Power Systems

Services for AIX, i50S, and Linux on Power Q
http://www.ibm.com/systems/services/labservices/platforms/labservices_power.html

Iin
@

Power/AIX Performance and Tuning Workshop (4.0-days on-site)

Overview: Delivery Details:

This offering aims to grow and exercise the Power/AlX tactical skills of its
attendees through lectures and lab sessions on their live-running AIX
servers. The lectures describe the AIX Virtual Memory Manager, Power7
and Power8 Affinity, tactics for indicating performance issues, and
remedial tactics to resolve these issues.

This is a customer onsite offering consisting of standup lectures and highly
interactive lab sessions to your live-running LPARs. Presentation handouts are
provided in PowerPoint format.

Throughout each lecture, the workshop illustrates its topics and tactics on the Lecture/Lab Session titles:
attendee’s live-running Power/AIX LPARs as lab session exercises. As
such, an incidental list of directly-observed and empirically-justified Part One: A Tactical Overview of Power/AlX Virtual Memory Manager
remedial tactics can be accumulated by each attendee as a by-product of mechanisms

the workshop.
o ) ) ) Part Two: The Four Dimensions of Power7/Power8 Affinity
The workshop is intended as a decidedly interactive venue. The attendee’s

questions are addressed immediately. Part Three: How to use Power/AIX Historical/Cumulative Statistics to Indicate
Performance Issues

Part Four: How to use Power/AXI Real-time Statistics to Indicate Performance

WHO benefits from this workshop and WHY ? Issues
. Clients with Power6/7/8 servers with AIX 6.1-7.2 LPARSs housing
workloads. Part Five: Remedial Tactics for Performance Tuning the Indicated Issues of
. Clients who care to monitor their Power/AlX workloads by the numbers. Power/AIX Workloads
. Clients with workloads they suspect are not executing optimally but have
been unable to determine what and why. Part Six: IBM Power8 Processor Core Microarchitecture: Thoughts and
. Historically, Power/AIX system administrators, database administrators, Considerations

application administrators, storage administrators, and IT architects have
all learned more than they could imagine in a 4.0-day workshop.

Duration
. 28 to 32 hours (depending on the ability to absorb rigorous content)
. 6 to 8 hours per day (does not include an hour for lunch)
. Request a conference room with a PC projector
. Request an authorized staffer to “putty” into your Power/AIX LPARs

Terms and Conditions: Actual Tasks, Deliverables, Service Estimates,,and travel requirements vary with each client’'s environment. When we have reached a final agreement on the scope of your initiative and our
level of assistance, a formal document describing our proposed work effort, costs, etc, will be presented for your approval and signature.

IBM Systems Lab Services & Training - Power Systems Linda Hoben — Opportunity Manager hoben@us.ibm.com 1-720-395-0556
Services for AlX, i50S, and Linux on Power Stephen Brandenburg — Opportunity Manager sbranden@us.ibm.com 1-301-240-2182



Organization of the POWERS8 processor core
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POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



In a given cycle, the core can fetch up to eight instructions, decode and
dispatch up to eight instructions, issue and execute up to ten instructions, and
commit up to eight instructions.

There are sixteen execution pipelines within the core:
* two fixed-point pipelines

* two load/store pipelines

* two load pipelines

» four double-precision floating-point pipelines (which can also act as eight
single-precision floating-point pipelines)

* two fully symmetric vector pipelines that execute instructions from both
the VMX (Vector eXtensions) and VSX (Vector-Scalar eXtensions) instruction
categories in the Power ISA

e one cryptographic pipeline
* one branch execution pipeline
* one condition register logical pipeline

* one decimal floating-point pipeline



To satisfy the high bandwidth requirement of many commercial, big data, and
HPC workloads, the POWERS core has significantly higher load/store
bandwidth capability compared to its predecessor.

While the POWER7 processor can perform two load/store operations in a
given cycle, the POWERS processor can perform two load operations in the
load pipes, in addition to two load or store operations in the load/store
pipes in a given cycle.

As was the case with the POWER7 processor, the large TLB of the POWERS
processor is not required to be invalidated on a partition swap. Instead, the
TLB entries can persist across partition swapping, so that if a partition is

swapped back again, some of its translation entries are likely to be found in
the TLB.

Additionally, the POWERS processor introduces a “partition prefetch”
capability, which restores the cache state when a partition is swapped back
into a processor core.



The POWERS processor allows dynamic SMT mode switches among the
various ST and SMT modes. The core supports the execution of up to eight
hardware architected threads, named TO through T7.

Unlike the POWER7 core, where the ST mode required the thread to run on
the TO position, in the POWERS core the single thread can run anywhere
from TO to T7. As long as it is the only thread running, the core can execute in
ST mode.

Similarly, as long as only two threads are running, the core can execute in
SMT2 mode, and it does not matter which hardware thread positions those
two threads are running.

This makes the SMT mode switch in the POWERS core significantly easier and
does not require software to invoke an expensive thread move operation to
put the thread(s) in the right position to switch into the desired SMT mode.

In addition, the performance difference of running one single thread on the
core when the core is in ST mode versus in any of the SMT modes is
significantly lower in the POWERS8 processor than in the POWER7 processor.



Figure 2 shows the instruction flow in POWERS8 processor core.
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Figure 2

POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.
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POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.
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POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.
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Most instructions (except for branches and condition register logical

instructions) are processed through the Unified Issue Queue (UniQueue),
which consists of two symmetric halves (UQO and UQ1).
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POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




There are also two copies (not shown) of the general-purpose (GPRO and
GPR1) and vector-scalar (VSRO and VSR1) physical register files.
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There are also two copies (not shown) of the general-purpose (GPRO and
GPR1) and vector-scalar (VSRO and VSR1) physical register files. One copy is

used by instructions processed through UQO while the other copy is for
instructions processed through UQ1.
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The fixed-point, floating-point, vector, load and load-store pipelines are
similarly split into two sets (FX0, FP0, VSX0, VMXO, LO, LSO in one set, and

FX1, FP1, VSX1, VMX1, L1, LS1 in the other set) and each set is associated
with one UniQueue half.
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Which issue queue, physical register file, and functional unit are used by a

given instruction depends on the simultaneous multi-threading mode of the
processor core at run time.
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POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




In ST mode, the two physical copies of the GPR and VSR have identical
contents. Instructions from the thread can be dispatched to either one of the
UniQueue halves (UQO or UQ1). Load balance across the two UniQueue
halves is maintained by dispatching alternate instructions of a given type to
alternating UniQueue halves.
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In the SMT modes (SMT2, SMT4, SMT8), the two copies of the GPR and VSR
have different contents. The threads are split into two thread sets and each

thread set is restricted to using only one UniQueue half and associated
registers and execution pipelines.
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Fixed-point, floating-point, vector and load/store instructions from even
threads (TO, T2, T4, T6) can only be placed in UQO, can only access GPRO and
VSRO, and can only be issued to FXO0, LSO, LO, FPO, VSX0, and VMXO pipelines.
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Fixed-point, floating-point, vector and load/store instructions from odd
threads (T1, T3, T5, T7) can only be placed in UQ1, can only access GPR1 and
VSR1, and can only be issued to FX1, LS1, L1, FP1, VSX1, and VMX1 pipelines.
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Cryptographic and decimal floating-point instructions from a thread can only
be placed in the corresponding UniQueue half, but since there is only one
instance of each of these units, all instructions are issued to the same unit.
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Branches and condition register logical instructions have their own dedicated
issue queues and execution pipelines, which are shared by all threads.
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Instruction Fetch Unit (IFU)
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POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



Instruction Fetch Unit

The Instruction Fetch Unit (IFU) in the POWERS8 processor (POWERS8 IFU) is
responsible for feeding the rest of the instruction pipeline with the most likely
stream of instructions from each active hardware thread.
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POWERSR instruction fetch unit logical low. The labels on the right of the figure denote the instruction fetch (IF) and instruction decode (ID) stages.
(EAT: effective address table, eatag: effective address tag; iop: internal operation._)




It uses branch prediction mechanisms to produce this stream well ahead of
the point of execution of the latest committed instruction.
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The IFU is also responsible for maintaining a balance of instruction execution
rates from the active threads using software-specified thread priorities,
decoding and forming groups of instructions for the rest of the instruction
pipeline, and executing branch instructions.
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five

decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode

stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
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Instruction Fetch Unit (continued)

The POWERS IFU has several new features relative to the POWER7 processor
IFU. Support for SMT8 and additional concurrent LPARs (logical partitions)
required changes in sizes for many resources in the IFU.

In addition, the following changes were made to improve the overall
performance of the POWERS core:

First, instruction cache alignment improvements result in a higher average
number of instructions fetched per fetch operation.

Second, branch prediction mechanism improvements result in more accurate
target and direction predictions.

Third, group formation improvements allow more instructions per dispatch
group, on average.

Fourth, instruction address translation hit rates were improved.

Fifth, instruction fusion is used to improve performance of certain common
instruction sequences.

Finally, better pipeline hazard avoidance mechanisms reduce pipeline
flushes.



Instruction fetching and pre-decoding

Fast instruction address translation for instruction fetch is supported by a fully
associative 64-entry Instruction Effective to Real Address translation Table
(IERAT). The IERAT is shared among all threads.

The IERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page
sizes are supported by storing entries with the next smaller supported page
size.

The IFU reads instructions into the I-cache from the L2 unified cache. Each
read request for instructions from the L2 returns four sectors of 32 bytes
each.

These reads are either demand loads that result from I-cache misses or
instruction pre-fetches. For each demand load request, the pre-fetch engine
initiates additional pre-fetches for sequential cache lines following the
demand load.

Demand and pre-fetch requests are made for all instruction threads
independently, and instructions may return in any order, including
interleaving of sectors for different cache lines.

Up to eight instruction read requests can be outstanding from the core to the
L2 cache.



The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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Instruction fetching and pre-decoding
Instruction prefetching is supported in ST, SMT2, and SMT4 modes only.

Up to three sequential lines are pre-fetched in ST mode and one sequential
line per thread in SMT2 and SMT4 modes.

There is no instruction prefetching in SMT8 mode to save on memory
bandwidth.

Pre-fetches are not guaranteed to be fetched and depending on the
congestion in the POWERS8 processor nest, some pre-fetches may be
dropped.

When there are multiple partitions running on the same core (as in the “split
core mode” discussed in the Introduction) the fetch cycles are divided equally
between the partitions.

If one of the partitions does not have any threads that are ready to fetch, its
fetch cycles are relinquished to the next partition that has threads that are
ready to fetch.



Group formation (of instructions)

Fetched instructions are processed by the branch scan logic and are also
stored in the instruction buffers (IBUF) for group formation.

The IBUF can hold up to 32 entries, each four instructions wide.

Each thread can have four entries in SMT8 mode, eight entries in SMT4
mode and 16 entries in SMT2 and ST modes.

Instructions are retrieved from the IBUF and collected into groups.

Thread priority logic selects one group of up to six non-branch and two
branch instructions in ST mode or two groups (from two different threads)
of up to three non-branch and one branch instructions in SMT modes per
cycle for group formation.



The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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Instruction decode -- after group formation (of instructions)

After group formation, the instructions are either decoded or routed to
microcode hardware that breaks complex instructions into a series of simple
internal operations.

Simple instructions are decoded and sent to dispatch.

Complex instructions that can be handled by two or three simple internal
operations are cracked into multiple dispatch slots.

Complex instructions requiring more than three simple internal operations
are handled in the microcode engine using a series of simple internal
operations.



The normal flow of instructions through the IFU includes six fetch and five
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode
stages overlap.)
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Instruction Sequencing Unit (ISU)
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POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



Figure 5 illustrates the logical flow of instructions in the ISU.
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The Instruction Sequencing Unit (ISU) dispatches instructions to the various

issue queues, renames registers in support of out-of-order execution, issues
instructions from the various issues queues to the execution pipelines,

completes executing instructions, and handles exception conditions.
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Instruction Sequencing Unit (ISU) (continued)
The POWERS processor dispatches instructions on a group basis.
In ST mode, it can dispatch a group of up to eight instructions per cycle.

In SMT mode, it can dispatch two groups per cycle from two different
threads and each group can have up to four instructions.

All resources such as the renaming registers and various queue entries must
be available for the instructions in a group before the group can be
dispatched.

Otherwise, the group will be held at the dispatch stage.

An instruction group to be dispatched can have at most two branch and six
non-branch instructions from the same thread in ST mode. If there is a
second branch, it will be the last instruction in the group.

In SMT mode, each dispatch group can have at most one branch and three
non-branch instructions.



Figure 5 illustrates the logical flow of instructions in the ISU.
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ISU (and the) Global Completion Table (GCT)

The ISU employs a Global Completion Table (GCT) to track all in-flight
instructions after dispatch. The GCT has 28 entries that are dynamically
shared by all active threads.

In ST mode, each GCT entry corresponds to one group of instructions.

In SMT modes, each GCT entry can contain up to two dispatch groups, both
from the same thread.

This allows the GCT to track a maximum of 224 in-flight instructions after
dispatch.



Figure 5 illustrates the logical flow of instructions in the ISU.
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Instructions flow from the memory hierarchy through various issue queues
and then are sent to the functional units for execution.
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POWERS processor core pipeline flow. QW-aligned refers to a quadword or 16-byte aligned address.




ISU (and the) Global Completion Table (GCT) (continued)

Each GCT entry contains finish bits for each instruction in the group. At
dispatch, the finish bits are set to reflect the valid instructions.

Instructions are issued out of order and executed speculatively.

When an instruction has executed successfully (without a reject), it is marked
as “finished.”

When all the instructions in a group are marked “finished,” and the group is
the oldest for a given thread, the group can “complete.”

When a group completes, the results of all its instructions are made
architecturally visible and the resources held by its instructions are released.



ISU (and the) Global Completion Table (GCT) (continued)

In ST mode, only one group, consisting of up to eight instructions, can
complete per cycle.

In SMT modes, the POWERS core can complete one group per thread set per
cycle, for a maximum total of two group completions per cycle.

When a group is completed, a completion group tag (GTAG) is broadcast so
that resources associated with the completing group can be released and
reused by new instructions.



The missing tuning factor: ST/SMT-2/-4/-8 threading mode

* We’ve been watching the
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94 169.6 P7:45:53
95 170.0 P7:45:54
95 170.0 P7:45:55
97 170.6 P7:45:56
98 170.7 P7:45:57
96 170.4 P7:45:58
93 169.3 P7:45:59
94 169.7 P7:46:00
92 169.2 P7:46:02
99 171.1 P7:46:03
94 169.6 P7:46:04
94 169.8 P7:46:05
94 169.8 P7:46:07
95 169.9 P7:46:08
91 168.9 P7:46:09
98 170.9 P7:46:10
time
ec hrlmi se
95 170.0 P7:46:11
97 170.5 P7:46:12
96 170.2 P7:46:13
96 170.2 P7:46:14
97 170.6 P7:46:15
95 170.0 pP7:46:16
89 168.1 P7:46:17
04 172.5 P7:46:18
93 169.5 P7:46:19
95 169.9 P7:46:20
00 171.6 P7:46:21
95 170.0 P7:46:22
98 170.8 P7:46:23
97 170.5 P7:46:24
97 170.5 P7:46:25
97 170.2 07:46:26
-5 :
-5 :
-4 :
time




The missing tuning factor: ST/SMT-2/-4/-8 threading mode

* The |
* Next, it is clear the POWERS core has markedly improved threading capability

values tell us how much CPU is used and the ec%, or CPUbusy%

* Perhaps now we should begin working with the missing tuning factor too, and
not just use the | values to monitor CPU utilization

page faults cpu time
pi po fr sr in sy cs us sy id wa pcC ec hiF mi se
0 0 209880 474371 23305 32689 49347 4060 0 0| 5.97 170.6)07:45:49
0 0 235597 324458 21610 34255 42169 39 61 0 0| 5.96 170.3)07:45:50
0 0 217973 424420 23268 35204 47365 41 59 0 0| 5.96 170.3)07:45:51
0 0 165232 577709 27767 40485 68236 36 62 0 2 |5.96 170.4)07:45:52
0 0 280305 381740 16645 23758 27180 30 70 0 0| 5.94 169.6)07:45:53
0 0 202322 508624 18288 56699 50940 50 49 0 2 |5.95 170.0)107:45:54
0 0 247113 416103 18099 27871 32296 34 66 0 1 | 5.95 170.0)07:45:55
0 0 220304 436819 21385 35251 41714 36 64 0 0| 5.97 170.6)07:45:56
0 0 200149 438075 24327 34351 52368 37 63 0 0| 5.98 170.7)07:45:57
0 0 200242 439267 24022 41875 51451 38 62 0 0| 5.96 170.4)07:45:58
0 0 183842 352926 14443 65697 37923 51 45 0 4 |5.93 169.3)07:45:59
0 0 271484 511750 16995 26588 27617 27 73 0 0 |5.94 169.7)107:46:00
0 0 276192 516765 16093 35379 26578 2971 0 0 |5.92 169.2)107:46:02
0 0 235086 522790 20146 45574 42703 32 68 0 0| 5.99 171.1)107:46:03
0 0 256486 545004 20127 39842 37642 3070 0 0| 5.94 169.6)07:46:04
0 0 275012 525465 17350 59493 27922 3070 0 0| 5.94 169.8)07:46:05
0 0 281271 526103 16200 74331 26622 28 72 0 0| 5.94 169.8)07:46:07
0 0 245856 582747 20175 67976 40111 32 68 0 0| 5.95 169.9)07:46:08
0 0 291276 462540 16155 84832 25935 2971 0 0| 5.91 168.9)07:46:09
0 0 228257 625080 21903 86171 45734 35 65 0 0| 5.98 170.9(07:46:10
page faults cpu time
pi po fr sr in sy cs us sy id wa pcC ec hir mi se




The missing tuning factor: ST/SMT-2/-4/-8 threading mode

* We should begin tuning POWERS8 with more attention to its innate capability
* Tuning POWERS8 by :pc and :ec% values alone is missing a deeper dimension

* We should begin controlling an ignored factor; | will call it “SMT threadedness”

* Too often | find workloads barely able to a keep a thread active on a core
A POWER core can show great productivity -- but only if we push it harder

* Do we agree that compelling more work from our investment is a good thing?

* Do you want to see what | mean? Sure, no problem.

* What can you distinguish between the top and bottom on the next slide?




AIX:vmstat -IWw 1:Which is more CPUcore efficient?

system configuration: Tcpu=24 mem=98304MB ent=3.50

kthr memory page faults cpu time
r b P w avm fre fi fo pi po fr sr in sy cs us sy id wa pc ec hr mi se
66 212 0 376 10599516 8908 208898 190 0 0 209880 474371 23305 32689 49347 4060 0 0 5.97 170.6 07:45:49
135 179 0 408 10603753 13740 229049 66 0 0 235597 324458 21610 34255 42169 39 61 0 0 5.96 170.3 07:45:50
88 195 0 476 10620193 7681 208767 200 0 0 217973 424420 23268 35204 47365 41 59 0 0 5.96 170.3 07:45:51
74 308 0 508 10615392 7983 170112 79 0 0 165232 577709 27767 40485 68236 36 62 0 2 5.96 170.4 07:45:52
111 171 0 623 10614238 7600 283700 39 0 0 280305 381740 16645 23758 27180 30 70 0 0 5.94 169.6 07:45:53
75 139 0 616 10615800 11800 176554 211 0 0 202322 508624 18288 56699 50940 50 49 0 2 5.95 170.0 07:45:54
80 140 0 416 10619720 10024 260671 175 0 0 247113 416103 18099 27871 32296 34 66 0 1 5.95 170.0 07:45:55
79 123 0 494 10619541 11802 218591 73 0 0 220304 436819 21385 35251 41714 36 64 0 0 5.97 170.6 07:45:56
107 134 0 661 10622384 7771 204261 203 0 0 200149 438075 24327 34351 52368 37 63 0 0 5.98 170.7 07:45:57
70 222 0 496 10625852 8871 196040 129 0 0 200242 439267 24022 41875 51451 38 62 0 0 5.96 170.4 07:45:58
18 237 0 492 10625100 11543 170450 269 0 0 183842 352926 14443 65697 37923 51 45 0 4 5.93 169.3 07:45:59
138 251 0 652 10629865 8225 280327 65 0 0 271484 511750 16995 26588 27617 27 73 0 0 5.94 169.7 07:46:00
110 68 0 472 10626466 7520 278207 17 0 0 276192 516765 16093 35379 26578 29 71 0 0 5.92 169.2 07:46:02
113 218 0 350 10627603 7530 235577 67 0 0 235086 522790 20146 45574 42703 32 68 0 0 5.99 171.1 07:46:03
99 187 0 334 10645179 7996 240955 157 0 0 256486 545004 20127 39842 37642 3070 0 0 5.94 169.6 07:46:04
109 82 0 494 10650842 8024 269364 146 0 0 275012 525465 17350 59493 27922 3070 0 0 5.94 169.8 07:46:05
103 110 0 248 10655552 9025 274516 100 0 0 281271 526103 16200 74331 26622 28 72 0 0 5.94 169.8 07:46:07
84 114 0 360 10651811 10365 251368 169 0 0 245856 582747 20175 67976 40111 32 68 0 0 5.95 169.9 07:46:08
102 148 0 279 10658461 7441 285750 164 0 0 291276 462540 16155 84832 25935 2971 0 0 5.91 168.9 07:46:09
96 148 0 338 10663679 11152 220862 322 0 0 228257 625080 21903 86171 45734 35 65 0 0 5.98 170.9 07:46:10
kthr memory page faults cpu time
r b p w avm fre fi fo pi po fr sr in sy cs us sy id wa pc ec hr mi se
System configuration: lcpu=64 mem=98304MBE ent=2.00
kthr memory page faults cpu time
r b P w avm fre fi fo pi po fr sr in s cs us sy id wa pc ec hr mi se
0 0 0 0 13157874 104956 938 51 0 0 0 0 1151 31013 6879 71 5 24 0 10.89 544.6 22:30:04
16 1 0 4 13159509 101976 1308 36 0 0 0 0 1099 19090 5028 64 3 32 0 10.96 548.0 22:30:05
12 2 0 4 13157043 102588 1857 60 0 0 0 0 1041 13968 4398 61 3 36 0 11.62 581.2 22:30:06
12 2 0 4 13160790 97452 1384 8 0 0 0 0 450 79248 3397 61 2 37 0 11.65 582.7 22:-30:07
12 1 0 4 13156803 99825 1613 14 0 0 0 0 486 13369 3638 61 2 37 O 10.84 541.9 22:30:08
10 2 0 2 13156883 97990 1756 7 0 0 0 0 658 80019 4007 61 2 37 0 10.27 513.3 22:30:09
11 2 0 4 13156834 95549 2501 46 0 0 0 0 825 6014 4327 62 2 36 0 10.50 525.0 22:30:10
8 2 0 2 13156834 93249 2287 50 0 0 0 0 794 14215 4372 61 2 37 0 10.07 503.4 22:30:11
14 2 0 4 13156834 89791 3447 65 0 0 0 0 1414 7407 5589 61 2 36 0 10.91 545.7 22:30:12
12 2 0 4 13156834 88134 1656 8 0 0 0 0 568 5845 3900 62 2 37 0 10.10 505.2 22:-30:13
9 2 0 2 13156834 86150 1986 21 0 0 0 0 560 13775 3804 61 2 37 O 10.08 503.9 22:30:14
10 2 0 2 13156834 84387 1763 17 0 0 0 0 637 6477 3855 62 2 36 0 10.07 503.6 22:30:15
10 2 0 4 13156834 82772 1600 19 0 0 0 0 535 6517 3757 62 1 37 0 9.97 498.7 22:30:16
8 2 0 4 13156834 80782 1985 20 0 0 0 0 596 13078 6712 61 2 37 O 10.26 513.1 22:30:17
9 2 0 4 13156834 78924 1848 28 0 0 0 0 680 12331 4065 61 2 37 0 9.83 491.5 22:30:18
9 2 0 4 13156834 76985 1939 7 0 0 0 0 593 6042 3812 61 2 37 0 9.45 472.5 22:30:19
12 2 0 2 13156834 74687 2327 40 0 0 0 0 690 6528 4030 61 2 37 0 9.73 486.7 22:30:20
0 0 0 4 13156834 72848 1805 13 0 0 0 0 501 13816 3718 62 2 37 0 9.85 492.6 22:30:21
8 2 0 4 13156834 71102 1744 8 0 0 0 0 a477 5866 3461 62 1 37 0 9.38 469.0 22:-30:22
10 2 0 4 13156834 68841 2261 12 0 0 0 0 672 5842 4107 62 2 37 0 9.77 488.7 22:30:23
kthr memory page faults cpu time
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Single Threading mode (ST)

A hard ST mode (AIX:smtctl —t 1) is not the same as a soft ST mode
* A hard ST mode (AIX:smtctl -t 1) cannot progress to SMT-2/-4/-8 on its own

* A soft ST mode may only be achieved with a hard SMT-2/-4/-8 mode setting
(whether by default AIX:smtctl —t 4 or a hard AIX:smtctl —t 2|8)

* A soft ST mode may progress to SMT-2/-4/-8 when needed
* A soft ST mode is unfortunately universal and virtually the default standard
* A soft ST mode is rooted in configuring too many virtual CPUs for SPLPARs

* A soft ST mode is also rooted in configuring too many dedicated CPU cores

* But, when a soft ST mode is needed, it is the fastest AND the most wasteful




Single Threading mode (ST)

* ST mode offers the most responsiveness/attention/dedication when ec<=100
* This paper shows that optimally “feeding” the CPUcore is the main goal

* Devoting a CPUcore to a single thread means “feeding the CPUcore with all
possible fury”

* ST mode ensures the most instructions and data possible are prefetched,
fetched, loaded/stored, decoded, grouped, dispatched, executed, completed
per cycle — but only for one thread

* In ST mode, the dispatched instructions are executed/balanced between both
sets of 8 + 8 execution pipelines of the core

* ST mode is most appropriate for workloads with fewer threads that are
compute-intensive, not 10 dependent, and have sustained activity durations

* ST mode is also most appropriate for workloads with immediate response-
time demands at the expense of wasted/idle CPUcycles

* Most enterprise workloads do not need the dedication of ST mode on POWERS

e Optional for study: Set AlX:schedo:vpm_throughput_mode=1 (default=0)




Simultaneous Multi Threading mode (SMT-2)

A hard SMT-2 mode (AIX:smtctl —t 2) is not the same as a soft SMT-2 mode
e A hard SMT-2 mode (AlX:smtctl —t 2) cannot progress to SMT-4/-8 on its own

* A soft SMT-2 mode may only be achieved with a hard SMT-4/SMT-8 mode
setting (whether by default AIX:smtctl —t 4 or a hard AlIX:smtctl —t 8)

e A soft SMT-2 mode may progress to SMT-4/-8 when needed

e A soft SMT-2 mode should be the standard threading model for POWERS8/AIX
workloads not needing the dedicated attention of ST mode

* A soft SMT-2 mode should be the standard threading model for POWERS8/AIX
workloads not needing a dedicated CPU LPAR implementation

* A soft SMT-2 mode has a better balance of CPUcore utilization & performance

e A soft SMT-2 mode workload is easily monitored, i.e.




Simultaneous Multi Threading mode (SMT-2)

But how do we ensure/implement an optimal soft SMT-2 mode?

* First, establish a higher SMT-4/SMT-8 mode “thread count” overflow capability
e Accept the default hard SMT-4 mode, or set a hard SMT-8 mode (smtctl —t 8)

* Next monitor AIX:mpstat —w 2 and learn to identify the real-time threadedness
* If in soft ST mode, remove a virtual CPU and monitor; repeat as needed

* If in any SMT-4 mode, add a virtual CPU and monitor; repeat as needed

* Alternatively, study and implement the more sophisticated tactic, i.e. schedo

e Dynamically set AlX:schedo:vpm_throughput_mode=2 (default=0)

* For workloads not needing a soft ST mode for unfettered performance, a soft
SMT-2 mode is confidently acceptable for POWERS8/AIX production service




Simultaneous Multi Threading mode (SMT-4)

What about purposely tuning to use a soft SMT-4 mode? Is it ever useful?

Yes, and more so for LPARs configured with two or more virtual CPUs

A soft SMT-4 mode is subjectively applicable for any nonproduction workload

Next, some (if not most) batch workloads are more throughput-focused overall,
and do not require the per-thread responsiveness of soft ST/SMT-2 mode

Also, some workloads have a high concurrent count of very short duration
threads that rapidly-repeatedly do virtually nothing as they quickly jump
on&off CPUcores; confirm w/sustained 20:1 ratio of

Finally, to exploit full utilization of limited software licenses, a soft SMT-4 mode
will ensure every available atom of productivity is extracted per licensed core

For any of the use-cases above, execute AlX:smtctl -t 8, then study and
dynamically set AlX:schedo:vpm_throughput_mode=4 (default=0)




Simultaneous Multi Threading mode (SMT-8)

* What about tuning to use a hard SMT-8 mode? Is it ever useful?
* Yes, it is specifically useful for setting a soft SMT-4 mode in the slide above

* There is no hard SMT-16 mode, so a soft SMT-8 mode cannot be set

* There are likely amazing applications perfect for hard SMT-8 mode — but given
my POWERS8/AIX enterprise focus, | haven’t run across them yet

* Most enterprise workloads do not have enough concurrently running threads
to achieve a natural SMT-8 thread density; when attempted, they are typically
holding at a steady SMT-4 thread density

* Of course, a hard SMT-8 mode can be forced by explicit directive

e This directive is setting AlX:schedo:vpm_throughput_mode=8 (default=0)




Load/Store Unit (LSU)

POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



Figure 6 illustrates the microarchitecture of the POWERS LSO pipeline.
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The Load/Store Unit (LSU) is responsible for executing all the load and store
instructions, managing the interface of the core with the rest of the systems

through the unified L2 cache and the Non-Cacheable Unit (NCU), and
implementing address translation as specified in the Power ISA.
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Load/Store Unit (LSU) (continued)

The POWERS LSU contains two symmetric load pipelines (LO and L1) and two
symmetric load/store pipelines (LSO and LS1).

Each of the LSO and LS1 pipelines are capable of executing a load or a store
operation in a cycle. Furthermore, each of LO and L1 pipelines are capable of
executing a load operation in a cycle.

In addition, simple fixed-point operations can also be executed in each of the
four pipelines in the LSU, with a latency of three cycles.

In ST mode, a given load/store instruction can execute in any appropriate
pipeline: LSO, LS1, LO and L1 for loads, LSO and LS1 for stores.

In SMT2, SMT4, and SMT8 mode, instructions from half of the threads
execute in pipelines LSO and LO, while instructions from the other half of the
threads execute in pipelines LS1 and L1.

Instructions are issued to the load/store unit out-of-order, with a bias
towards the oldest instructions first.

Stores are issued twice; an address generation operation is issued to the LSO
or LS1 pipeline, while a data operation to retrieve the contents of the register
being stored is issued to the LO or L1 pipeline.



The LSU must ensure the effect of architectural program order of execution of
the load and store instructions, even though the instructions can be issued

and executed out-of-order.

To achieve that, the LSU employs two main queues: the store reorder queue
(SRQ) and the load reorder queue (LRQ).
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ISU Address Translation

In the Power ISA, programs execute in a 64-bit effective addresses space. (A
32-bit operating mode supports the execution of programs with 32-bit
general purpose registers and 32-bit effective addresses.)

During program execution, 64-bit effective addresses are translated by the
first level translation into 50-bit real addresses that are used for all addressing
in the cache and memory subsystem.

The first level translation consists of a primary Data Effective-to-Real Address
Translation (DERAT), a secondary DERAT, and an Instruction Effective-to-Real
Address Translation (IERAT).

When a data reference misses the primary DERAT, it looks up the address
translation in the secondary DERAT. If the translation is found in the
secondary DERAT, it is then loaded into the primary DERAT.



ISU Address Translation (continued)

If the translation is not found in either the primary or the secondary DERAT,
the second-level translation process is invoked to generate the translation.

When an instruction reference misses the IERAT, the second-level translation
is also invoked to generate the translation.

The second-level translation consists of a per-thread Segment Lookaside
Buffer (SLB) and a Translation Lookaside Buffer (TLB) that is shared by all

active threads.



ISU Address Translation (continued)

Effective addresses are first translated into 78-bit virtual addresses using the
segment table and the 78-bit virtual addresses are then translated into 50-bit
real addresses using the page frame table.

While the architected segment and page frame tables are large and reside in
main memory, the SLB and TLB serve as caches of the recently used entries
from the segment table and page frame table, respectively.

The POWERS processor supports two segment sizes, 256 MB and 1 TB, and
four page sizes: 4 KB, 64 KB, 16 MB, and 16 GB.



ISU Address Translation (continued)

The primary Data Effective-to-Real Address Translation (DERAT) is a 48-entry,
fully-associative, Content Addressed Memory (CAM) based cache. Physically,
there are four identical copies of the primary DERAT, associated with the two
load/store pipelines and two load pipelines.

In ST mode, the four copies of the primary DERAT are kept synchronized with
identical contents. So, in ST mode, logically there are a total of 48 entries
available.

In the SMT modes, two synchronized primary DERATs (in LSO and LO pipes)
contain translation entries for half of the active threads while the two other
synchronized primary DERATs (in LS1 and L1 pipes) contain translation entries
for the other half of the active threads.

In the SMT modes, the first two paired primary DERATs contain addresses
that can be different from the other two paired primary DERATs, for a total
of 96 logical entries.



ISU Address Translation (continued)

Each Primary DERAT entry translates either 4 KB, 64 KB, or 16 MB pages. The
16 GB pages are broken into 16 MB pages in the primary DERAT.

The primary DERAT employs a binary tree Least Recently Used (LRU)
replacement policy.

The secondary DERAT is a 256-entry, fully associative, CAM-based cache.
In single thread mode, all 256 entries are available for that thread.

In SMT mode, the secondary DERAT is treated as two 128-entry arrays, one
for each thread set.

The secondary DERAT replacement policy is a simple First-In First-Out (FIFO)
scheme.



ISU Address Translation (continued)
The SLB is a 32-entry-per-thread, fully associative, CAM-based buffer.
Each SLB entry can support 256 MB or 1 TB segment sizes.

The Multiple Pages Per Segment (MPSS) extension of Power ISA is supported
in the POWERS processor. With MPSS, a segment with a base page size of 4
KB can have 4 KB, 64 KB, and 16 MB pages concurrently present in the
segment.

For a segment with a base page size of 64 KB, pages of size 64 KB and 16 MB
are allowed concurrently.

The SLB is managed by supervisor code, with the processor generating a data
or instruction segment interrupt when an SLB entry needed for translation is
not found.



ISU Address Translation (continued)

The Translation Lookaside Buffer (TLB) is a 2,048-entry, 4-way set associative
buffer.

The TLB is managed by hardware, and employs a true LRU replacement policy.

A miss in the TLB causes a table-walk operation, by which the TLB is reloaded
from the page frame table in memory.

There can be up to four concurrent outstanding table-walks for TLB misses.

The TLB also provides a hit-under-miss function, where the TLB can be
accessed and return translation information to the DERAT while a table-walk
is in progress.

* Tight&Fat: Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive
the core-level harder with SMT-2/4/8 thread-level workloads on POWERS.

e Tight&Fat aims to preclude use of “UnCapped” shared-CPU capacity

* Tight&Fat aims to avoid running beyond CPU Entitlement, i.e. ec>100

* Tight&Fat aims to keep vCPUs on their Home cores for the hottest TLB hits
e Tight&Fat means vCPUs do not visit strange CPUcores with no TLB content




ISU Address Translation (continued)

In the POWERS8 LSU, each TLB entry is tagged with the LPAR (logical partition)
identity.

For a TLB hit, the LPAR identity of the TLB entry must match the LPAR identity
of the active partition running on the core.

When a partition is swapped in, there is no need to explicitly invalidate the
TLB entries.

If a swapped-in partition has run previously on the same core, there is a
chance that some of its TLB entries are still available which reduces TLB
misses and improves performance.



Data prefetch

The purpose of the data prefetch mechanism is to reduce the negative
performance impact of memory latencies, particularly for technical
workloads.

These programs often access memory in regular, sequential patterns. Their
working sets are also so large that they often do not fit into the cache
hierarchy used in the POWERS processor.

Designed into the load-store unit, the prefetch engine can recognize streams
of sequentially increasing or decreasing accesses to adjacent cache lines and
then request anticipated lines from more distant levels of the cache/memory
hierarchy.

The usefulness of these prefetches is reinforced as repeated demand
references are made along such a path or stream.

The depth of prefetch is then increased until enough lines are being brought
into the L1, L2, and L3 caches so that much or all of the load latency can be
hidden.

The most urgently needed lines are prefetched into the nearest cache levels.



Data prefetch (continued)

During stream start up, several lines ahead of the current demand reference
can be requested from the memory subsystem.

After steady state is achieved, each stream confirmation causes the engine to
bring one additional line into the L1 cache, one additional line into the L2
cache, and one additional line into the L3 cache.

To effectively hide the latency of the memory access while minimizing the
potentially detrimental effects of prefetching such as cache pollution, the
requests are staged such that the line that is being brought into the L3 cache
is typically several lines ahead of the one being brought into the L1 cache.

Because the L3 cache is much larger than the L1 cache, it can tolerate the
most speculative requests more easily than the L1 cache can.



Fixed-Point Unit (FXU)

POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar
unit (VSU) and decimal floating point
unit (DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



Fixed-Point Unit (FXU)
The Fixed-Point Unit (FXU) is composed of two identical pipelines (FX0 and

FX1).
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POWERS FXU overview (FXO0 pipe shown).




Fixed-Point Unit (FXU) (continued)

As shown in Figure 7, each FXU pipeline consists of:

a multiport General Purpose Register (GPR) file

an arithmetic and logic unit (ALU) to execute add, subtract, compares and
trap instructions

a rotator (ROT) to execute rotate, shift and select instructions

a count unit (CNT) to execute count leading zeros instruction

a bit select unit (BSU) to execute bit permute instruction

a miscellaneous execution unit (MXU) to execute population count, parity
and binary-coded decimal assist instructions

a multiplier (MUL)
and a divider (DIV)



Fixed-Point Unit (FXU) (continued)

Certain resources such as the Software Architected Register file (SAR) and
Fixed-Point Exception Register (XER) file are shared between the two
pipelines.

The most frequent fixed-point instructions are executed in one cycle and
dependent operations may issue back to back to the same pipeline, if they are
dispatched to the same UniQueue half (otherwise, a one-cycle bubble is
introduced).

Other instructions may take two, four, or a variable number of cycles.



Vector-and-Scalar Unit (VSU)/Decimal Floating Point Unit (DFU)

POWERS processor core floorplan.

Figure 1 shows the POWERS core
floorplan.

The core consists primarily of the
following six units: instruction fetch
unit (IFU), instruction sequencing unit
(ISU), load-store unit (LSU), fixed-point
unit (FXU), vector and scalar unit
(VSU) and decimal floating point unit
(DFU).

The instruction fetch unit contains a
32 KB I-cache (instruction cache) and
the load-store unit contains a 64 KB D-
cache (data cache), which are both
backed up by a tightly integrated 512
KB unified L2 cache.



The POWERS processor Vector-and-Scalar Unit (VSU), shown in Figure 8,
has been completely redesigned from its initial implementation in the
POWER7Y processor to support the growing computation and memory
bandwidth requirements of business analytics and big data applications.
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The POWERS8 VSU now supports dual issue of all scalar and vector
instructions of the Power ISA.
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Vector-and-Scalar Unit (VSU) (continued)
Further improvements include:
* atwo-cycle VMX/VSX Permute (PM) pipeline latency

* doubling of the store bandwidth to two 16-byte vectors/cycle to match the
32-byte/cycle load bandwidth

» execution of all floating-point compare instructions using the two-cycle
Simple Unit (XS) pipeline to speedup branch execution

The total number of 1,024 16-byte VSX registers is implemented as a two-
level register space.

The second level, namely the Software Architected Registers (SAR), maintains
all 64 architected VSX registers plus up to 64 TM checkpointed registers per
thread.



Vector-and-Scalar Unit (VSU) (continued)

Two copies of a 144-entry vector register file (VRF), one associated with each
UniQueue, constitute the first level register space.

Each VRF contains up to 64 recently used architected registers and up to 80
in-flight rename registers shared across all threads in the corresponding
UniQueue half.

In ST mode, the contents of both VRFs are kept synchronized.

When running in SMT modes, the two VSU issue ports and VRFs work
separately, thereby doubling the number of in-flight copies of architected
and rename registers.

The SAR space always appears as shared resource of the nine ports and all
eight threads allowing for dynamic movement of threads or alternation of
ST/SMT mode.



Vector-and-Scalar Unit (VSU) (continued)

The VSU features a large number of new instructions and architectural
refinements for applications like business analytics, big data, string
processing, and security.

The VSX pipelines now supports 2-way 64-bit vector and 128-bit scalar integer
data types and new direct GPR-to/from-VSR move operations that provide a
fixed-latency and high bandwidth data exchange between the vector and
general purpose registers.

The added VMX crypto instruction set is targeted towards AES, SHA2 and
CRC computations and several instructions have been promoted into VSX to
gain access to all 64 architected vector registers.



Decimal Floating Point Unit (DFU)

The Decimal Floating Point Unit (DFU) in the POWERS core allows fully
pipelined execution of the Power ISA “Decimal Floating Point” instructions.

The DFU attachment has greatly been improved to provide symmetrical,
conflict-free access from both UniQueue ports, resulting in more predictable
execution latencies.

The issue-to-issue latency is 13 cycles for dependent instructions.

The DFU is IEEE 754-2008 compliant and includes native support for signed
decimal fixed-point add and fixed-point subtract with an operand length of up
to 31 decimal digits, which speeds up the execution of business analytics
applications such as DB2 BLU.



VSU and DFU

The new VSU microarchitecture doubles the number of VSX/VMX simple
integer and permute units, supports many new instructions, adds a new
crypto engine and greatly improves attachment of the redesigned DFU
pipeline.

With all these enhancements, the overall performance for many of the new
computational intensive workloads is greatly improved in the POWERS
processor.



Summary and Conclusion

The POWERS processor continues the tradition of innovation in the POWER
line of processors.

In addition to being the best-of-breed design for IBM’s commercial workloads,
the POWERS processor design is also targeted for big data, analytics, and
cloud application environments and provides the highest performance design
in the industry.

The POWERS core is designed with high throughput performance in mind and
supports eight powerful threads per core.

For many commercial workloads, each POWERS core can provide about 1.5
times more single thread performance and twice the throughput
performance over a POWER?7 core.



Summary and Conclusion

For many commercial workloads, each POWERS core can provide about 1.5
times more single thread performance and twice the throughput
performance over a POWER?7 core.

Today, with an established history of high-performance success, POWERS8 has
proved it “can provide about 1.5 times more single thread performance and
twice the throughput performance over a POWER7 core.”

So much so, the nature of my work with performance-tuning POWERS8/AIX

workloads is substantially different from POWERS5/6/7. Bluntly, it runs so fast,
it covers for a host of past indiscretions.

No matter, there will always be new indiscretions. The enterprise will soon
evolve and grow workloads to tax even POWERS8’s amazing capabilities.




Thank You
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