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ABSTRACT

The POWER8 processor is the latest RISC (Reduced Instruction Set Computer) 
microprocessor from IBM. It is fabricated using the company’s 22-nm Silicon on Insulator 
(SOI) technology with 15 layers of metal, and it has been designed to significantly improve 
both single-thread performance and single-core throughput over its predecessor, the 
POWER7 processor.

The rate of increase in processor frequency enabled by new silicon technology 
advancements has decreased dramatically in recent generations, as compared to the historic 
trend. This has caused many processor designs in the industry to show very little 
improvement in either single-thread or single-core performance, and, instead, larger 
numbers of cores are primarily pursued in each generation.

Going against this industry trend, the POWER8 processor relies on a much improved core 
and nest microarchitecture to achieve approximately one-and-a-half times the single-thread 
performance and twice the single-core throughput of the POWER7 processor in several 
commercial applications. Combined with a 50% increase in the number of cores (from 8 in 
the POWER7 processor to 12 in the POWER8 processor), the result is a processor that leads 
the industry in performance for enterprise workloads.

This paper describes the core microarchitecture innovations made in the POWER8 processor 
that resulted in these significant performance benefits.
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M. D. Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. 
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Presenter Commentary Caveat

• This presentation is an intermix of excerpts/figures from the original 
whitepaper and presenter commentary.

• The blue borders designate Presenter Commentary (like this slide).

• The presenter’s comments are based solely on the words of the whitepaper, 
and do not offer any insider’s insight beyond the content of this whitepaper.

• Please judge the presenter’s thoughts and considerations accordingly.

• That is, I don’t know anything more than what we all can read together here.



This paper describes the core microarchitecture innovations made in the 
POWER8 processor that resulted in these significant performance benefits.  

Based on principles adopted in the POWER7 multi-core processor, the 
POWER8 processor continues to emphasize a balanced multi-core design, 
with significant improvements in both single-thread and core performance
and modest increases in the core count per chip.

This contrasts with other multi-core processor designs in the industry today, 
for which an increase in the core count is primarily pursued with little 
improvement in single-thread or core performance.

In this eighth-generation POWER processor, IBM continues to innovate its 
RISC (Reduced Instruction Set Computer) product line by introducing a 
twelve-core multi-chip design, with large on-chip eDRAM (embedded 
Dynamic Random Access Memory) caches, and high-performance eight-way 
multi-threaded cores, implementing the Power ISA (Instruction Set 
Architecture) version 2.07.



Our goal for the POWER8 processor was to significantly improve the socket-
level, core-level and thread-level performance in each of the multiple 
simultaneous multithreading (SMT) modes relative to the POWER7 
processor. 

This was achieved by keeping the area and power requirement of each 
POWER8 processor core (POWER8 core) sufficiently low to allow twelve such 
cores on the processor chip while maintaining its power at the same level as 
that of the POWER7 processor chip.

• Regarding “to significantly improve the socket-level, core-level and thread-
level performance in each of the multiple simultaneous multithreading 
(SMT) modes”, because there are as many as 12 CPUcores per socket 
(which is a tremendous amount of processing capacity), configuring an LPAR 
to reside on only one socket that accesses only local DIMMs – should be a 
pervasive POWER8 imperative – given its ideal performance advantages.

• Tight&Fat:  Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive 
the core-level harder with SMT-2/4/8 thread-level workloads on POWER8.

• View/confirm any configuration with AIX:lssrad -av output.

• Study&practice using the Dynamic Platform Optimizer (DPO) utility.



An at-a-glance comparison between the POWER7 and the POWER8 
processors can be seen in Table 1.



Because of the slowdown in frequency increases from silicon technology, 
thread and core performance were improved through micro-architectural 
enhancements such as an:

• advanced branch prediction mechanism

• extensive out-of-order execution

• dual pipelines for instruction decode, dispatch, issue, and execution

• advanced eight-way simultaneous multi-threading

• advanced prefetching with more precise application software control over 
the prefetching mechanism

• doubled bandwidth throughout the cache and memory hierarchy

• a significant reduction in memory latency relative to the POWER7 processor 
design



Many business analytics applications run in thread-rich configurations, to 
exploit the inherent parallelism in these computations. To accommodate 
them, the POWER8 core doubled the hardware thread parallelism to 8-way 
multithreading (referred to as SMT8).

Because of the doubling in size of the L1 data cache and L2 and L3 caches, 
each thread in a POWER8 core can have as much resident memory footprint 
as a thread in a POWER7 core.

In fact, it was a design requirement that at each common multithreading 
level -- ST (single-thread), SMT2 (two-way multithreading), and SMT4 (four-
way multithreading) -- the individual thread performance on a POWER8 core 
should be better than on a POWER7 core.

In single-thread mode, practically all of the core resources can be used by 
the single thread.

At the same time, these core resources can efficiently support eight threads 
per core. The core can dynamically change mode among ST, SMT2, SMT4, and 
SMT8, depending on the number of active threads.



Cloud instances often do not have enough simultaneously active application 
threads to utilize all eight hardware threads on the POWER8 core.

To instead exploit the parallelism across cloud instances, the POWER8 core 
can be put in a “split-core mode”, so that four partitions can run on one core 
at the same time, with up to two hardware threads per partition.

• This knocked my socks off!!  This means a vCPU in SMT-2 mode from four 
different LPARs can run concurrently on a given POWER8 core.

• In other words, four LPARs can have a vCPU in SMT-2 mode running on the 
same POWER8 core at the same time.

• For tuning, it means vCPU time-slice fragmentation (the 4th Dimension of 
Affinity) could eventually be partially mitigated by use of split-core mode.

• This POWER8 capability is also called “micro-threading”.

• I believe this is only offered with PowerKVM, i.e. redbook:IBM PowerKVM
Configuration and Use (sg248231.pdf Oct 2014)



Modern computing environments, and cloud systems in particular, require 
extra layers of security and protection in order to deliver a safe and usable 
solution to the end user.

For that reason, the POWER8 processor includes several features that 
accelerate cryptographic codes.

In particular, the POWER8 core includes a cryptographic unit supporting new 
Power ISA instructions for the computation of AES (Advanced Encryption 
Standard), SHA (Secure Hash Algorithm), and CRC (Cyclic Redundancy Check) 
codes.

The IBM 4764 PCI-X Cryptographic Coprocessor was withdrawn in 2011.



Big data applications typically have a larger memory footprint and working set 
than traditional commercial applications. Correspondingly, compared to the 
POWER7 core, the POWER8 core has an L1 data cache that is twice as large, 
has twice as many ports from that data cache for higher read/write 
throughput, and has four times as many entries in its TLB (Translation 
Lookaside Buffer).

In addition, POWER8 technology expands the addressing range of memory 
accesses using fusion to allow applications to access large data sets more 
quickly. As mentioned, the L2 and L3 caches in the POWER8 processor are 
also twice the size of the corresponding POWER7 processor caches, on a per 
core basis.

• The trend of POWER engineering is clearly about keeping more data closer 
with 2 times larger L1 data cache and 2 times larger L2 and L3 caches.

• Having twice as many ports from that data cache for higher read/write 
throughput means moving more data faster to the 16 execution pipelines.

• Having four times as many entries in its TLB (Translation Lookaside Buffer) 
means cache-speed address translations. The TLB is a cache of address 
translations.  Any TLB miss means searching the hardware page table (HPT;
residing on slower main memory) for the missed address translation.

• Keeping Tight&Fat on one socket substantially improves all of the above. 



Optimally exploiting the POWER8 core microarchitecture

• The best way to exploit POWER8/AIX is to first understand your workload with 
meaningful POWER/AIX tactical monitoring, i.e. “knowing it by the numbers”.

• Open invitation:  Write to me for my script and I promise to assist in this regard.

• Optimal exploitation doesn’t always mean the fastest performance/throughput

• It may mean the most productivity-per-CPUcore or productivity-per-license

• It may mean the quickest responsiveness at the expense of wasted CPUcycles

• Sometimes you just care to understand what your workload is doing better

• Sometimes you want to learn what else can be done to improve a situation

• Other times there is a crisis and you urgently need another willing set-of-eyes

• Try me:  Call or write and I will do what I can to help.  Really truly, I’m real.

• I work for IBM Lab Services and Training; we’re a different delivery practice



IBM Systems Lab Services, U.S. Power AIX & LoP Offerings

Power (VM) Virtual Management 
� PowerVM HealthCheck / Best Practices Review
� PowerVM Customized Training (NPIV, LPM, AMS/AME, etc.)
� PowerVM Provisioning Toolkit (with NEW! “Capture” capability) 
� IBM Proactive Monitoring for AIX & VIOS  (“ProMon”)
� NEW! PowerVM LPM Automation Tool (from China Labs team)
� Power Enterprise Pools Enablement
� WPAR (Workload Partition) Implementation and/or Migration

Power (HA) High Availability
� PowerHA Customized Training 
� PowerHA SE Implementation / HealthCheck
� PowerHA & Storage Implementation for Disaster Recovery
� PowerHA EE Implementation for DR (incl. Toolkit “Capture”)

Power Performance 
� Power Virtualization Performance (PowerVP)
� Performance Optimization Assessment (POA)
� Oracle on AIX Performance Assessment Services
� Capacity Planning Tool (CPT) installation & configuration
� DB2 on AIX Application Performance Assessment (DB2 BLU)
� IBM Tivoli Monitoring (ITM) support for clients with AIX EE

Power Workshops 
� Power8 Transition Workshop
� NEW! Power8 Provisioning Assurance
� Power/AIX Monitoring and Tuning (not using NMON)
� IBM Power & Storage Planning for Disaster Recovery Workshop
� Data Center Availability Assessment

Linux 
� Power IFL Implementation
� Linux on Power (LoP) Customized Training
� IBM PowerKVM
� Linux on PowerVM
� Linux on PowerVM Performance / HealthCheck
� Linux Workloads Assessment Workshop
� NEW! Linux on Power education offerings to expand customer 

training beyond the 1-day jump-starts from ATS
� Field Programmable Gate Array (FPGA) Development Platform RPQ

Big Data Enablement  
� IBM Power Analytics Infrastructure Enablement  

(DNS, DHCP, email, virus scanning, file sharing, etc.)

� BigData Assessment & Jumpstart Services 
� Linux on Power BigData - InfoSphere BigInsights
� Linux on Power BigData - InfoSphere InfoStreams
� Linux on Power BigData - Executive Infrastructure Review

Cloud
� Cloud Design Workshop for custom cloud enablement
� PowerVC Implementation as a Pre-req to CMO
� Cloud Manager with OpenStack (CMO) Implementation
� Cloud IT Optimization Assessment
� Advanced Cloud on Power Services 
� IBM Smart Analytics Optimizer Enablement
� SAP Landscape Virtualization Management Design & Planning 

Workshop
� SAP Landscape Virtualization Management Implementation
� Other “Open Stack” Consulting Services

Stephen Brandenburg – sbranden@us.ibm.com  -OR- Linda Hoben – hoben@us.ibm.com -OR- Michael Gordon – mgordo@us.ibm.com

Security
� IBM AIX Security Assessment

� LDAP Integration including Pass-through Authentication (PTA)  

� IBM PowerSC™ Security & Automated Compliance Workshop

� PowerSC – Trusted Firewall Workshop (TWR)

� PowerSC – Trusted Surveyor Workshop (TS)

� AIX Auditing Workshop 

� AIX Hacking Prevention Workshop

� Encrypted File System (EFS) Workshop

� Role Based Access Control (RBAC) Workshop/Support Services

SAP HANA on Power
• Installation and POC

• Health Check Assessment



IBM Systems Lab Services & Training - Power Systems
Services for AIX, i5OS, and Linux on Power

http://www.ibm.com/systems/services/labservices/platforms/labservices_power.html

Power/AIX Performance and Tuning Workshop (4.0-days on-site)

Terms and Conditions: Actual Tasks, Deliverables, Service Estimates,,and travel requirements vary with each client’s environment. When we have reached a final agreement on the scope of your initiative and our 

level of assistance, a formal document describing our proposed work effort, costs, etc, will be presented for your approval and signature. 

Overview:

This offering aims to grow and exercise the Power/AIX tactical skills of its 

attendees through lectures and lab sessions on their live-running AIX 

servers.  The lectures describe the AIX Virtual Memory Manager, Power7 

and Power8 Affinity, tactics for indicating performance issues, and 

remedial tactics to resolve these issues.

Throughout each lecture, the workshop illustrates its topics and tactics on the 

attendee’s live-running Power/AIX LPARs as lab session exercises.  As 

such, an incidental list of directly-observed and empirically-justified 

remedial tactics can be accumulated by each attendee as a by-product of 

the workshop.

The workshop is intended as a decidedly interactive venue.  The attendee’s 

questions are addressed immediately.

WHO benefits from this workshop and WHY ?
• Clients with Power6/7/8 servers with AIX 6.1-7.2 LPARs housing 

workloads.

• Clients who care to monitor their Power/AIX workloads by the numbers.

• Clients with workloads they suspect are not executing optimally but have 

been unable to determine what and why.

• Historically, Power/AIX system administrators, database administrators, 

application administrators, storage administrators, and IT architects have 

all learned more than they could imagine in a 4.0-day workshop.

Duration

• 28 to 32 hours (depending on the ability to absorb rigorous content)

• 6 to 8 hours per day (does not include an hour for lunch)

• Request a conference room with a PC projector

• Request an authorized staffer to “putty” into your Power/AIX LPARs

Delivery  Details:

This is a customer onsite offering consisting of standup lectures and highly 

interactive lab sessions to your live-running LPARs.  Presentation handouts are 

provided in PowerPoint format.

Lecture/Lab Session titles:

Part One:  A Tactical Overview of Power/AIX Virtual Memory Manager 

mechanisms

Part Two:  The Four Dimensions of Power7/Power8 Affinity

Part Three:  How to use Power/AIX Historical/Cumulative Statistics to Indicate 

Performance Issues

Part Four:  How to use Power/AXI Real-time Statistics to Indicate Performance 

Issues

Part Five:  Remedial Tactics for Performance Tuning the Indicated Issues of 

Power/AIX Workloads

Part Six:  IBM Power8 Processor Core Microarchitecture: Thoughts and 

Considerations

Linda Hoben – Opportunity Manager hoben@us.ibm.com 1-720-395-0556
Stephen Brandenburg – Opportunity Manager sbranden@us.ibm.com 1-301-240-2182

IBM Systems Lab Services & Training - Power Systems
Services for AIX, i5OS, and Linux on Power



Figure 1 shows the POWER8 core 
floorplan.

The core consists primarily of the 
following six units: instruction fetch 
unit (IFU), instruction sequencing unit 
(ISU), load-store unit (LSU), fixed-point 
unit (FXU), vector and scalar unit 
(VSU) and decimal floating point unit 
(DFU). 

The instruction fetch unit contains a 
32 KB I-cache (instruction cache) and 
the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Organization of the POWER8 processor core



In a given cycle, the core can fetch up to eight instructions, decode and 
dispatch up to eight instructions, issue and execute up to ten instructions, and 
commit up to eight instructions. 

There are sixteen execution pipelines within the core: 

• two fixed-point pipelines

• two load/store pipelines

• two load pipelines

• four double-precision floating-point pipelines (which can also act as eight 
single-precision floating-point pipelines) 

• two fully symmetric vector pipelines that execute instructions from both 
the VMX (Vector eXtensions) and VSX (Vector-Scalar eXtensions) instruction 
categories in the Power ISA

• one cryptographic pipeline

• one branch execution pipeline

• one condition register logical pipeline

• one decimal floating-point pipeline



To satisfy the high bandwidth requirement of many commercial, big data, and 
HPC workloads, the POWER8 core has significantly higher load/store 
bandwidth capability compared to its predecessor. 

While the POWER7 processor can perform two load/store operations in a 
given cycle, the POWER8 processor can perform two load operations in the 
load pipes, in addition to two load or store operations in the load/store 
pipes in a given cycle.

As was the case with the POWER7 processor, the large TLB of the POWER8 
processor is not required to be invalidated on a partition swap. Instead, the 
TLB entries can persist across partition swapping, so that if a partition is 
swapped back again, some of its translation entries are likely to be found in 
the TLB.

Additionally, the POWER8 processor introduces a “partition prefetch” 
capability, which restores the cache state when a partition is swapped back 
into a processor core.



The POWER8 processor allows dynamic SMT mode switches among the 
various ST and SMT modes. The core supports the execution of up to eight 
hardware architected threads, named T0 through T7. 

Unlike the POWER7 core, where the ST mode required the thread to run on 
the T0 position, in the POWER8 core the single thread can run anywhere 
from T0 to T7. As long as it is the only thread running, the core can execute in 
ST mode. 

Similarly, as long as only two threads are running, the core can execute in 
SMT2 mode, and it does not matter which hardware thread positions those 
two threads are running. 

This makes the SMT mode switch in the POWER8 core significantly easier and 
does not require software to invoke an expensive thread move operation to 
put the thread(s) in the right position to switch into the desired SMT mode.

In addition, the performance difference of running one single thread on the 
core when the core is in ST mode versus in any of the SMT modes is 
significantly lower in the POWER8 processor than in the POWER7 processor.



Figure 2 shows the instruction flow in POWER8 processor core.



Instructions flow from the memory hierarchy through various issue queues 
and then are sent to the functional units for execution. 
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Instructions flow from the memory hierarchy through various issue queues 
and then are sent to the functional units for execution. 



Most instructions (except for branches and condition register logical 
instructions) are processed through the Unified Issue Queue (UniQueue), 
which consists of two symmetric halves (UQ0 and UQ1).



There are also two copies (not shown) of the general-purpose (GPR0 and 
GPR1) and vector-scalar (VSR0 and VSR1) physical register files. One copy is 
used by instructions processed through UQ0 while the other copy is for 
instructions processed through UQ1.



There are also two copies (not shown) of the general-purpose (GPR0 and 
GPR1) and vector-scalar (VSR0 and VSR1) physical register files. One copy is 
used by instructions processed through UQ0 while the other copy is for 
instructions processed through UQ1.



The fixed-point, floating-point, vector, load and load-store pipelines are 
similarly split into two sets (FX0, FP0, VSX0, VMX0, L0, LS0 in one set, and
FX1, FP1, VSX1, VMX1, L1, LS1 in the other set) and each set is associated 
with one UniQueue half.



Which issue queue, physical register file, and functional unit are used by a 
given instruction depends on the simultaneous multi-threading mode of the 
processor core at run time. 



In ST mode, the two physical copies of the GPR and VSR have identical 
contents. Instructions from the thread can be dispatched to either one of the 
UniQueue halves (UQ0 or UQ1). Load balance across the two UniQueue
halves is maintained by dispatching alternate instructions of a given type to 
alternating UniQueue halves.



In the SMT modes (SMT2, SMT4, SMT8), the two copies of the GPR and VSR 
have different contents. The threads are split into two thread sets and each 
thread set is restricted to using only one UniQueue half and associated 
registers and execution pipelines.



Fixed-point, floating-point, vector and load/store instructions from even 
threads (T0, T2, T4, T6) can only be placed in UQ0, can only access GPR0 and 
VSR0, and can only be issued to FX0, LS0, L0, FP0, VSX0, and VMX0 pipelines.



Fixed-point, floating-point, vector and load/store instructions from odd 
threads (T1, T3, T5, T7) can only be placed in UQ1, can only access GPR1 and 
VSR1, and can only be issued to FX1, LS1, L1, FP1, VSX1, and VMX1 pipelines.



Cryptographic and decimal floating-point instructions from a thread can only 
be placed in the corresponding UniQueue half, but since there is only one 
instance of each of these units, all instructions are issued to the same unit.



Branches and condition register logical instructions have their own dedicated 
issue queues and execution pipelines, which are shared by all threads.



Figure 1 shows the POWER8 core 
floorplan.

The core consists primarily of the 
following six units: instruction fetch 
unit (IFU), instruction sequencing unit 
(ISU), load-store unit (LSU), fixed-point 
unit (FXU), vector and scalar unit 
(VSU) and decimal floating point unit 
(DFU). 

The instruction fetch unit contains a 
32 KB I-cache (instruction cache) and 
the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Instruction Fetch Unit (IFU)



Instruction Fetch Unit

The Instruction Fetch Unit (IFU) in the POWER8 processor (POWER8 IFU) is 
responsible for feeding the rest of the instruction pipeline with the most likely 
stream of instructions from each active hardware thread. 



It uses branch prediction mechanisms to produce this stream well ahead of 
the point of execution of the latest committed instruction. 



The IFU is also responsible for maintaining a balance of instruction execution 
rates from the active threads using software-specified thread priorities, 
decoding and forming groups of instructions for the rest of the instruction 
pipeline, and executing branch instructions.



The normal flow of instructions through the IFU includes six fetch and five 
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode 
stages overlap.)
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The normal flow of instructions through the IFU includes six fetch and five 
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode 
stages overlap.)



Instruction Fetch Unit (continued)

The POWER8 IFU has several new features relative to the POWER7 processor 
IFU. Support for SMT8 and additional concurrent LPARs (logical partitions) 
required changes in sizes for many resources in the IFU.

In addition, the following changes were made to improve the overall 
performance of the POWER8 core: 

First, instruction cache alignment improvements result in a higher average 
number of instructions fetched per fetch operation. 

Second, branch prediction mechanism improvements result in more accurate 
target and direction predictions.

Third, group formation improvements allow more instructions per dispatch 
group, on average. 

Fourth, instruction address translation hit rates were improved. 

Fifth, instruction fusion is used to improve performance of certain common 
instruction sequences.

Finally, better pipeline hazard avoidance mechanisms reduce pipeline 
flushes.



Instruction fetching and pre-decoding

Fast instruction address translation for instruction fetch is supported by a fully 
associative 64-entry Instruction Effective to Real Address translation Table 
(IERAT). The IERAT is shared among all threads. 

The IERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page 
sizes are supported by storing entries with the next smaller supported page 
size.

The IFU reads instructions into the I-cache from the L2 unified cache. Each 
read request for instructions from the L2 returns four sectors of 32 bytes 
each. 

These reads are either demand loads that result from I-cache misses or 
instruction pre-fetches. For each demand load request, the pre-fetch engine 
initiates additional pre-fetches for sequential cache lines following the 
demand load. 

Demand and pre-fetch requests are made for all instruction threads 
independently, and instructions may return in any order, including 
interleaving of sectors for different cache lines. 

Up to eight instruction read requests can be outstanding from the core to the 
L2 cache.



The normal flow of instructions through the IFU includes six fetch and five 
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode 
stages overlap.)



Instruction fetching and pre-decoding

Instruction prefetching is supported in ST, SMT2, and SMT4 modes only. 

Up to three sequential lines are pre-fetched in ST mode and one sequential 
line per thread in SMT2 and SMT4 modes.

There is no instruction prefetching in SMT8 mode to save on memory 
bandwidth.

Pre-fetches are not guaranteed to be fetched and depending on the 
congestion in the POWER8 processor nest, some pre-fetches may be 
dropped.

…

When there are multiple partitions running on the same core (as in the “split 
core mode” discussed in the Introduction) the fetch cycles are divided equally 
between the partitions.

If one of the partitions does not have any threads that are ready to fetch, its 
fetch cycles are relinquished to the next partition that has threads that are 
ready to fetch.



Group formation (of instructions)

Fetched instructions are processed by the branch scan logic and are also 
stored in the instruction buffers (IBUF) for group formation.

The IBUF can hold up to 32 entries, each four instructions wide.

Each thread can have four entries in SMT8 mode, eight entries in SMT4 
mode and 16 entries in SMT2 and ST modes.

Instructions are retrieved from the IBUF and collected into groups. 

Thread priority logic selects one group of up to six non-branch and two 
branch instructions in ST mode or two groups (from two different threads) 
of up to three non-branch and one branch instructions in SMT modes per 
cycle for group formation.



The normal flow of instructions through the IFU includes six fetch and five 
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode 
stages overlap.)



Instruction decode -- after group formation (of instructions)

After group formation, the instructions are either decoded or routed to 
microcode hardware that breaks complex instructions into a series of simple 
internal operations. 

Simple instructions are decoded and sent to dispatch. 

Complex instructions that can be handled by two or three simple internal 
operations are cracked into multiple dispatch slots. 

Complex instructions requiring more than three simple internal operations 
are handled in the microcode engine using a series of simple internal 
operations.



The normal flow of instructions through the IFU includes six fetch and five 
decode pipeline stages, as shown in Figure 3. (The last fetch and first decode 
stages overlap.)
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(ISU), load-store unit (LSU), fixed-
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(VSU) and decimal floating point unit 
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the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Instruction Sequencing Unit (ISU)



Figure 5 illustrates the logical flow of instructions in the ISU. 



The Instruction Sequencing Unit (ISU) dispatches instructions to the various 
issue queues, renames registers in support of out-of-order execution, issues 
instructions from the various issues queues to the execution pipelines, 
completes executing instructions, and handles exception conditions.



Instruction Sequencing Unit (ISU) (continued)

The POWER8 processor dispatches instructions on a group basis.

In ST mode, it can dispatch a group of up to eight instructions per cycle. 

In SMT mode, it can dispatch two groups per cycle from two different 
threads and each group can have up to four instructions. 

All resources such as the renaming registers and various queue entries must 
be available for the instructions in a group before the group can be 
dispatched.

Otherwise, the group will be held at the dispatch stage. 

An instruction group to be dispatched can have at most two branch and six 
non-branch instructions from the same thread in ST mode. If there is a 
second branch, it will be the last instruction in the group. 

In SMT mode, each dispatch group can have at most one branch and three 
non-branch instructions.



Figure 5 illustrates the logical flow of instructions in the ISU. 



Figure 5 illustrates the logical flow of instructions in the ISU. 



ISU (and the) Global Completion Table (GCT)

The ISU employs a Global Completion Table (GCT) to track all in-flight 
instructions after dispatch. The GCT has 28 entries that are dynamically 
shared by all active threads. 

In ST mode, each GCT entry corresponds to one group of instructions.

In SMT modes, each GCT entry can contain up to two dispatch groups, both 
from the same thread. 

This allows the GCT to track a maximum of 224 in-flight instructions after 
dispatch.



Figure 5 illustrates the logical flow of instructions in the ISU. 



Instructions flow from the memory hierarchy through various issue queues 
and then are sent to the functional units for execution. 



ISU (and the) Global Completion Table (GCT) (continued)

Each GCT entry contains finish bits for each instruction in the group. At 
dispatch, the finish bits are set to reflect the valid instructions.

Instructions are issued out of order and executed speculatively.

When an instruction has executed successfully (without a reject), it is marked 
as “finished.” 

When all the instructions in a group are marked “finished,” and the group is 
the oldest for a given thread, the group can “complete.” 

When a group completes, the results of all its instructions are made 
architecturally visible and the resources held by its instructions are released.



ISU (and the) Global Completion Table (GCT) (continued)

In ST mode, only one group, consisting of up to eight instructions, can 
complete per cycle. 

In SMT modes, the POWER8 core can complete one group per thread set per 
cycle, for a maximum total of two group completions per cycle. 

When a group is completed, a completion group tag (GTAG) is broadcast so 
that resources associated with the completing group can be released and 
reused by new instructions.



The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• We’ve been watching the AIX:vmstat –IWw 1:cpu:pc|:ec values



The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• The :pc|:ec values tell us how much CPU is used and the ec%, or CPUbusy%

• Next, it is clear the POWER8 core has markedly improved threading capability

• Perhaps now we should begin working with the missing tuning factor too, and 
not just use the :pc|:ec values to monitor CPU utilization



The missing tuning factor: ST/SMT-2/-4/-8 threading mode

• We should begin tuning POWER8 with more attention to its innate capability 

• Tuning POWER8 by :pc and :ec% values alone is missing a deeper dimension

• We should begin controlling an ignored factor; I will call it “SMT threadedness”

• Too often I find workloads barely able to a keep a thread active on a core

• A POWER core can show great productivity -- but only if we push it harder

• Do we agree that compelling more work from our investment is a good thing?

• Do you want to see what I mean?  Sure, no problem.

• What can you distinguish between the top and bottom on the next slide?



AIX:vmstat –IWw 1: Which is more CPUcore efficient?



Single Threading mode (ST)

• A hard ST mode (AIX:smtctl –t 1) is not the same as a soft ST mode

• A hard ST mode (AIX:smtctl –t 1) cannot progress to SMT-2/-4/-8 on its own

• A soft ST mode may only be achieved with a hard SMT-2/-4/-8 mode setting 
(whether by default AIX:smtctl –t 4 or a hard AIX:smtctl –t 2|8)

• A soft ST mode may progress to SMT-2/-4/-8 when needed

• A soft ST mode is unfortunately universal and virtually the default standard

• A soft ST mode is rooted in configuring too many virtual CPUs for SPLPARs

• A soft ST mode is also rooted in configuring too many dedicated CPU cores

• But, when a soft ST mode is needed, it is the fastest AND the most wasteful



Single Threading mode (ST)

• ST mode offers the most responsiveness/attention/dedication when ec<=100

• This paper shows that optimally “feeding” the CPUcore is the main goal

• Devoting a CPUcore to a single thread means “feeding the CPUcore with all 
possible fury”

• ST mode ensures the most instructions and data possible are prefetched, 
fetched, loaded/stored, decoded, grouped, dispatched, executed, completed 
per cycle – but only for one thread

• In ST mode, the dispatched instructions are executed/balanced between both 
sets of 8 + 8 execution pipelines of the core

• ST mode is most appropriate for workloads with fewer threads that are 
compute-intensive, not IO dependent, and have sustained activity durations

• ST mode is also most appropriate for workloads with immediate response-
time demands at the expense of wasted/idle CPUcycles

• Most enterprise workloads do not need the dedication of ST mode on POWER8

• Optional for study:  Set AIX:schedo:vpm_throughput_mode=1 (default=0)



Simultaneous Multi Threading mode (SMT-2)

• A hard SMT-2 mode (AIX:smtctl –t 2) is not the same as a soft SMT-2 mode

• A hard SMT-2 mode (AIX:smtctl –t 2) cannot progress to SMT-4/-8 on its own

• A soft SMT-2 mode may only be achieved with a hard SMT-4/SMT-8 mode 
setting (whether by default AIX:smtctl –t 4 or a hard AIX:smtctl –t 8)

• A soft SMT-2 mode may progress to SMT-4/-8 when needed

• A soft SMT-2 mode should be the standard threading model for POWER8/AIX 
workloads not needing the dedicated attention of ST mode

• A soft SMT-2 mode should be the standard threading model for POWER8/AIX 
workloads not needing a dedicated CPU LPAR implementation

• A soft SMT-2 mode has a better balance of CPUcore utilization & performance

• A soft SMT-2 mode workload is easily monitored, i.e. AIX:mpstat –w 2



Simultaneous Multi Threading mode (SMT-2)

• But how do we ensure/implement an optimal soft SMT-2 mode?

• First, establish a higher SMT-4/SMT-8 mode “thread count” overflow capability

• Accept the default hard SMT-4 mode, or set a hard SMT-8 mode (smtctl –t 8)

• Next monitor AIX:mpstat –w 2 and learn to identify the real-time threadedness

• If in soft ST mode, remove a virtual CPU and monitor; repeat as needed

• If in any SMT-4 mode, add a virtual CPU and monitor; repeat as needed

• Alternatively, study and implement the more sophisticated tactic, i.e. schedo

• Dynamically set AIX:schedo:vpm_throughput_mode=2 (default=0)

• For workloads not needing a soft ST mode for unfettered performance, a soft 
SMT-2 mode is confidently acceptable for POWER8/AIX production service



Simultaneous Multi Threading mode (SMT-4)

• What about purposely tuning to use a soft SMT-4 mode?  Is it ever useful?

• Yes, and more so for LPARs configured with two or more virtual CPUs

• A soft SMT-4 mode is subjectively applicable for any nonproduction workload

• Next, some (if not most) batch workloads are more throughput-focused overall, 
and do not require the per-thread responsiveness of soft ST/SMT-2 mode 

• Also, some workloads have a high concurrent count of very short duration 
threads that rapidly-repeatedly do virtually nothing as they quickly jump 
on&off CPUcores; confirm w/sustained 20:1 ratio of AIX:mpstat –w 2:cs to :ics

• Finally, to exploit full utilization of limited software licenses, a soft SMT-4 mode 
will ensure every available atom of productivity is extracted per licensed core

• For any of the use-cases above, execute AIX:smtctl –t 8, then study and 
dynamically set AIX:schedo:vpm_throughput_mode=4 (default=0)



Simultaneous Multi Threading mode (SMT-8)

• What about tuning to use a hard SMT-8 mode?  Is it ever useful?

• Yes, it is specifically useful for setting a soft SMT-4 mode in the slide above

• There is no hard SMT-16 mode, so a soft SMT-8 mode cannot be set

• There are likely amazing applications perfect for hard SMT-8 mode – but given 
my POWER8/AIX enterprise focus, I haven’t run across them yet

• Most enterprise workloads do not have enough concurrently running threads 
to achieve a natural SMT-8 thread density; when attempted, they are typically 
holding at a steady SMT-4 thread density

• Of course, a hard SMT-8 mode can be forced by explicit directive

• This directive is setting AIX:schedo:vpm_throughput_mode=8 (default=0)



Figure 1 shows the POWER8 core 
floorplan.

The core consists primarily of the 
following six units: instruction fetch 
unit (IFU), instruction sequencing unit 
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar unit 
(VSU) and decimal floating point unit 
(DFU). 

The instruction fetch unit contains a 
32 KB I-cache (instruction cache) and 
the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Load/Store Unit (LSU)



Figure 6 illustrates the microarchitecture of the POWER8 LS0 pipeline.



The Load/Store Unit (LSU) is responsible for executing all the load and store 
instructions, managing the interface of the core with the rest of the systems 
through the unified L2 cache and the Non-Cacheable Unit (NCU), and 
implementing address translation as specified in the Power ISA. 



Load/Store Unit (LSU) (continued)

The POWER8 LSU contains two symmetric load pipelines (L0 and L1) and two 
symmetric load/store pipelines (LS0 and LS1). 

Each of the LS0 and LS1 pipelines are capable of executing a load or a store 
operation in a cycle. Furthermore, each of L0 and L1 pipelines are capable of 
executing a load operation in a cycle.

In addition, simple fixed-point operations can also be executed in each of the 
four pipelines in the LSU, with a latency of three cycles.

In ST mode, a given load/store instruction can execute in any appropriate 
pipeline: LS0, LS1, L0 and L1 for loads, LS0 and LS1 for stores. 

In SMT2, SMT4, and SMT8 mode, instructions from half of the threads 
execute in pipelines LS0 and L0, while instructions from the other half of the 
threads execute in pipelines LS1 and L1.

Instructions are issued to the load/store unit out-of-order, with a bias 
towards the oldest instructions first.

Stores are issued twice; an address generation operation is issued to the LS0 
or LS1 pipeline, while a data operation to retrieve the contents of the register 
being stored is issued to the L0 or L1 pipeline.



The LSU must ensure the effect of architectural program order of execution of 
the load and store instructions, even though the instructions can be issued 
and executed out-of-order. 

To achieve that, the LSU employs two main queues: the store reorder queue 
(SRQ) and the load reorder queue (LRQ).



ISU Address Translation

In the Power ISA, programs execute in a 64-bit effective addresses space. (A 
32-bit operating mode supports the execution of programs with 32-bit 
general purpose registers and 32-bit effective addresses.) 

During program execution, 64-bit effective addresses are translated by the 
first level translation into 50-bit real addresses that are used for all addressing 
in the cache and memory subsystem. 

The first level translation consists of a primary Data Effective-to-Real Address 
Translation (DERAT), a secondary DERAT, and an Instruction Effective-to-Real 
Address Translation (IERAT). 

When a data reference misses the primary DERAT, it looks up the address 
translation in the secondary DERAT. If the translation is found in the 
secondary DERAT, it is then loaded into the primary DERAT.



ISU Address Translation (continued)

If the translation is not found in either the primary or the secondary DERAT, 
the second-level translation process is invoked to generate the translation. 

When an instruction reference misses the IERAT, the second-level translation 
is also invoked to generate the translation. 

The second-level translation consists of a per-thread Segment Lookaside 
Buffer (SLB) and a Translation Lookaside Buffer (TLB) that is shared by all 
active threads. 



ISU Address Translation (continued)

Effective addresses are first translated into 78-bit virtual addresses using the 
segment table and the 78-bit virtual addresses are then translated into 50-bit 
real addresses using the page frame table. 

While the architected segment and page frame tables are large and reside in 
main memory, the SLB and TLB serve as caches of the recently used entries 
from the segment table and page frame table, respectively. 

The POWER8 processor supports two segment sizes, 256 MB and 1 TB, and 
four page sizes: 4 KB, 64 KB, 16 MB, and 16 GB.



ISU Address Translation (continued)

The primary Data Effective-to-Real Address Translation (DERAT) is a 48-entry, 
fully-associative, Content Addressed Memory (CAM) based cache. Physically, 
there are four identical copies of the primary DERAT, associated with the two 
load/store pipelines and two load pipelines. 

In ST mode, the four copies of the primary DERAT are kept synchronized with 
identical contents. So, in ST mode, logically there are a total of 48 entries 
available.

In the SMT modes, two synchronized primary DERATs (in LS0 and L0 pipes) 
contain translation entries for half of the active threads while the two other 
synchronized primary DERATs (in LS1 and L1 pipes) contain translation entries 
for the other half of the active threads. 

In the SMT modes, the first two paired primary DERATs contain addresses 
that can be different from the other two paired primary DERATs, for a total 
of 96 logical entries.



ISU Address Translation (continued)

Each Primary DERAT entry translates either 4 KB, 64 KB, or 16 MB pages. The 
16 GB pages are broken into 16 MB pages in the primary DERAT. 

The primary DERAT employs a binary tree Least Recently Used (LRU) 
replacement policy. 

The secondary DERAT is a 256-entry, fully associative, CAM-based cache. 

In single thread mode, all 256 entries are available for that thread. 

In SMT mode, the secondary DERAT is treated as two 128-entry arrays, one 
for each thread set. 

The secondary DERAT replacement policy is a simple First-In First-Out (FIFO) 
scheme.



ISU Address Translation (continued)

The SLB is a 32-entry-per-thread, fully associative, CAM-based buffer. 

Each SLB entry can support 256 MB or 1 TB segment sizes. 

The Multiple Pages Per Segment (MPSS) extension of Power ISA is supported 
in the POWER8 processor. With MPSS, a segment with a base page size of 4 
KB can have 4 KB, 64 KB, and 16 MB pages concurrently present in the 
segment. 

For a segment with a base page size of 64 KB, pages of size 64 KB and 16 MB 
are allowed concurrently. 

The SLB is managed by supervisor code, with the processor generating a data 
or instruction segment interrupt when an SLB entry needed for translation is 
not found.



ISU Address Translation (continued)

The Translation Lookaside Buffer (TLB) is a 2,048-entry, 4-way set associative 
buffer. 

The TLB is managed by hardware, and employs a true LRU replacement policy. 

A miss in the TLB causes a table-walk operation, by which the TLB is reloaded 
from the page frame table in memory. 

There can be up to four concurrent outstanding table-walks for TLB misses. 

The TLB also provides a hit-under-miss function, where the TLB can be 
accessed and return translation information to the DERAT while a table-walk 
is in progress. 

• Tight&Fat:  Configure fewer vCPUs, grant 0.7-0.9 eCPU per vCPU, and drive 
the core-level harder with SMT-2/4/8 thread-level workloads on POWER8.

• Tight&Fat aims to preclude use of “UnCapped” shared-CPU capacity

• Tight&Fat aims to avoid running beyond CPU Entitlement, i.e. ec>100

• Tight&Fat aims to keep vCPUs on their Home cores for the hottest TLB hits

• Tight&Fat means vCPUs do not visit strange CPUcores with no TLB content 



ISU Address Translation (continued)

In the POWER8 LSU, each TLB entry is tagged with the LPAR (logical partition) 
identity. 

For a TLB hit, the LPAR identity of the TLB entry must match the LPAR identity 
of the active partition running on the core. 

When a partition is swapped in, there is no need to explicitly invalidate the 
TLB entries. 

If a swapped-in partition has run previously on the same core, there is a 
chance that some of its TLB entries are still available which reduces TLB 
misses and improves performance.



Data prefetch

The purpose of the data prefetch mechanism is to reduce the negative 
performance impact of memory latencies, particularly for technical 
workloads. 

These programs often access memory in regular, sequential patterns. Their 
working sets are also so large that they often do not fit into the cache 
hierarchy used in the POWER8 processor. 

Designed into the load-store unit, the prefetch engine can recognize streams 
of sequentially increasing or decreasing accesses to adjacent cache lines and 
then request anticipated lines from more distant levels of the cache/memory 
hierarchy. 

The usefulness of these prefetches is reinforced as repeated demand 
references are made along such a path or stream. 

The depth of prefetch is then increased until enough lines are being brought 
into the L1, L2, and L3 caches so that much or all of the load latency can be 
hidden. 

The most urgently needed lines are prefetched into the nearest cache levels.



Data prefetch (continued)

During stream start up, several lines ahead of the current demand reference 
can be requested from the memory subsystem. 

After steady state is achieved, each stream confirmation causes the engine to 
bring one additional line into the L1 cache, one additional line into the L2 
cache, and one additional line into the L3 cache. 

To effectively hide the latency of the memory access while minimizing the 
potentially detrimental effects of prefetching such as cache pollution, the 
requests are staged such that the line that is being brought into the L3 cache 
is typically several lines ahead of the one being brought into the L1 cache. 

Because the L3 cache is much larger than the L1 cache, it can tolerate the 
most speculative requests more easily than the L1 cache can.



Figure 1 shows the POWER8 core 
floorplan.

The core consists primarily of the 
following six units: instruction fetch 
unit (IFU), instruction sequencing unit 
(ISU), load-store unit (LSU), fixed-
point unit (FXU), vector and scalar 
unit (VSU) and decimal floating point 
unit (DFU). 

The instruction fetch unit contains a 
32 KB I-cache (instruction cache) and 
the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Fixed-Point Unit (FXU)



Fixed-Point Unit (FXU)

The Fixed-Point Unit (FXU) is composed of two identical pipelines (FX0 and 
FX1).



Fixed-Point Unit (FXU) (continued)

As shown in Figure 7, each FXU pipeline consists of: 

• a multiport General Purpose Register (GPR) file

• an arithmetic and logic unit (ALU) to execute add, subtract, compares and 
trap instructions

• a rotator (ROT) to execute rotate, shift and select instructions 

• a count unit (CNT) to execute count leading zeros instruction 

• a bit select unit (BSU) to execute bit permute instruction

• a miscellaneous execution unit (MXU) to execute population count, parity 
and binary-coded decimal assist instructions

• a multiplier (MUL)

• and a divider (DIV) 



Fixed-Point Unit (FXU) (continued)

Certain resources such as the Software Architected Register file (SAR) and 
Fixed-Point Exception Register (XER) file are shared between the two 
pipelines.

The most frequent fixed-point instructions are executed in one cycle and 
dependent operations may issue back to back to the same pipeline, if they are 
dispatched to the same UniQueue half (otherwise, a one-cycle bubble is 
introduced). 

Other instructions may take two, four, or a variable number of cycles.



Figure 1 shows the POWER8 core 
floorplan.

The core consists primarily of the 
following six units: instruction fetch 
unit (IFU), instruction sequencing unit 
(ISU), load-store unit (LSU), fixed-point 
unit (FXU), vector and scalar unit 
(VSU) and decimal floating point unit 
(DFU). 

The instruction fetch unit contains a 
32 KB I-cache (instruction cache) and 
the load-store unit contains a 64 KB D-
cache (data cache), which are both 
backed up by a tightly integrated 512 
KB unified L2 cache.

Vector-and-Scalar Unit (VSU)/Decimal Floating Point Unit (DFU)



The POWER8 processor Vector-and-Scalar Unit (VSU), shown in Figure 8, 
has been completely redesigned from its initial implementation in the 
POWER7 processor to support the growing computation and memory 
bandwidth requirements of business analytics and big data applications.



The POWER8 VSU now supports dual issue of all scalar and vector 
instructions of the Power ISA.



Vector-and-Scalar Unit (VSU) (continued)

Further improvements include:

• a two-cycle VMX/VSX Permute (PM) pipeline latency

• doubling of the store bandwidth to two 16-byte vectors/cycle to match the 
32-byte/cycle load bandwidth

• execution of all floating-point compare instructions using the two-cycle 
Simple Unit (XS) pipeline to speedup branch execution

The total number of 1,024  16-byte VSX registers is implemented as a two-
level register space.

The second level, namely the Software Architected Registers (SAR), maintains 
all 64 architected VSX registers plus up to 64 TM checkpointed registers per 
thread.



Vector-and-Scalar Unit (VSU) (continued)

Two copies of a 144-entry vector register file (VRF), one associated with each 
UniQueue, constitute the first level register space. 

Each VRF contains up to 64 recently used architected registers and up to 80 
in-flight rename registers shared across all threads in the corresponding 
UniQueue half.

In ST mode, the contents of both VRFs are kept synchronized.

When running in SMT modes, the two VSU issue ports and VRFs work 
separately, thereby doubling the number of in-flight copies of architected 
and rename registers.

The SAR space always appears as shared resource of the nine ports and all 
eight threads allowing for dynamic movement of threads or alternation of 
ST/SMT mode.



Vector-and-Scalar Unit (VSU) (continued)

The VSU features a large number of new instructions and architectural 
refinements for applications like business analytics, big data, string 
processing, and security. 

The VSX pipelines now supports 2-way 64-bit vector and 128-bit scalar integer 
data types and new direct GPR-to/from-VSR move operations that provide a 
fixed-latency and high bandwidth data exchange between the vector and 
general purpose registers. 

The added VMX crypto instruction set is targeted towards AES, SHA2 and 
CRC computations and several instructions have been promoted into VSX to 
gain access to all 64 architected vector registers.



Decimal Floating Point Unit (DFU) 

The Decimal Floating Point Unit (DFU) in the POWER8 core allows fully 
pipelined execution of the Power ISA “Decimal Floating Point” instructions.

The DFU attachment has greatly been improved to provide symmetrical, 
conflict-free access from both UniQueue ports, resulting in more predictable 
execution latencies. 

The issue-to-issue latency is 13 cycles for dependent instructions. 

The DFU is IEEE 754-2008 compliant and includes native support for signed 
decimal fixed-point add and fixed-point subtract with an operand length of up 
to 31 decimal digits, which speeds up the execution of business analytics 
applications such as DB2 BLU.



VSU and DFU 

The new VSU microarchitecture doubles the number of VSX/VMX simple 
integer and permute units, supports many new instructions, adds a new 
crypto engine and greatly improves attachment of the redesigned DFU 
pipeline.

With all these enhancements, the overall performance for many of the new 
computational intensive workloads is greatly improved in the POWER8 
processor.



Summary and Conclusion

The POWER8 processor continues the tradition of innovation in the POWER 
line of processors. 

In addition to being the best-of-breed design for IBM’s commercial workloads, 
the POWER8 processor design is also targeted for big data, analytics, and 
cloud application environments and provides the highest performance design 
in the industry. 

The POWER8 core is designed with high throughput performance in mind and 
supports eight powerful threads per core. 

For many commercial workloads, each POWER8 core can provide about 1.5 
times more single thread performance and twice the throughput 
performance over a POWER7 core.



Summary and Conclusion

…

For many commercial workloads, each POWER8 core can provide about 1.5 
times more single thread performance and twice the throughput 
performance over a POWER7 core.

Today, with an established history of high-performance success, POWER8 has 
proved it “can provide about 1.5 times more single thread performance and 
twice the throughput performance over a POWER7 core.”

So much so, the nature of my work with performance-tuning POWER8/AIX 
workloads is substantially different from POWER5/6/7.  Bluntly, it runs so fast, 
it covers for a host of past indiscretions.

No matter, there will always be new indiscretions. The enterprise will soon 
evolve and grow workloads to tax even POWER8’s amazing capabilities.
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