National Semiconductor

Process E3 N-Channel Power MOSFET

DESCRIPTION

These dice are n-channel, enhancement mode, power MOSFETs designed especially for high power, high speed applications, such as power supplies, AC and DC motor control and high energy pulse circuits.

This process is available in the following device types:

TO-204 (Case 42)	TO-220 (Case 37)	
IRF340	IRF740CF	
IRF341	IRF740	
IRF342	IRF741	
IRF343	IRF742	
	IRF743	

Electrical C	haracteristics	$T_{\rm C} = 25^{\circ} \rm C$ (unless o	therwise noted)
--------------	----------------	--	-----------------

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{DSS}	Drain to Source Voltage (Note 1)	$I_{D} = 250 \ \mu A; V_{GS} = 0V$	400		v
IDSS	Zero Gate Voltage Drain	$V_{DS} = Rated Voltage V_{GS} = 0V$		250	μΑ
IGSS	Gate Leakage Current	$V_{DS} = \pm 20V; V_{DS} = 0V$		±100	nA
V _{GS(TH)}	Gate Threshold Voltage	$I_{\rm D} = 250 \ \mu \text{A}; V_{\rm DS} = V_{\rm GS}$	2.0	4.0	V
R _{DS(ON)}	Static On-Resistance (Note 2)	$V_{GS} = 10V; I_{D} = 5A$		0.55	Ω
9FS	Forward Transconductance	$V_{DS} = 10V; I_D = 5A$	4.0		Siemens
C _{iss}	Input Capacitance	$V_{DS} = 25V; V_{GS} = 0V$ f = 1 MHz		1600	pF
Coss	Output Capacitance			450	pF
C _{rss}	Reverse Transfer			150	pF
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 175V; I_D = 5A$ $V_{GS} = 10V; R_{GEN} = 4.7\Omega$		35	ns
t _r	Rise Time	$R_{GS} = 4.7\Omega$		15	ns
t _{d(off)}	Turn-Off Delay Time			90	ns
t _f	Fall Time			35	ns
Qg	Total Gate Charge	$V_{GS} = 10V; I_D = 12A$ $V_{DD} = 400V$		60	nC

Note 1: $T_J = +25^{\circ}C$ to $+150^{\circ}C$.

Note 2: Pulse Test: Pulse Width \leq 80 μ s, Duty Cycle \leq 1%.

Process E3

Process E3

Typical Performance Characteristics

FIGURE 1. Output Characteristics

TL/G/10041-26

FIGURE 5. Capacitance vs Drain to Source Voltage

Process E3

Process E3

Typical Performance Characteristics (Continued)

FIGURE 7. Forward Biased Safe Operating Area

Typical Electrical Characteristics

Each die is probed and electrically tested to the limits specified in the Electrical Characteristics Table. However, high current parameters and thermal characteristics specified in the packaged device data sheets cannot be tested or guaranteed in die form because of the power dissipation limits of unmounted die and current handling limits of probe tips.

These parameters are:

Thermal Resistance

Forward Voltage Drop at Rated Current Reverse Recovery Characteristics at Rated Current Surge Current