
Z8000
MICROPROCESSOR

FAMILY
PROGRAMMING

1st EDITION

JUNE 1990

CONTENTS

Instruction S e t .. 1
Introduction ... I
Functional Sum m ary... 1
Load and Exchange Instructions.. 1
Arithmetic Instructions... 2
Logical Instructions.. 3
Program Control Instructions.. 3
Bit Manipulation Instructions.................................. 4
Rotate and Shift Instructions.. 5
Block Transfer And String Manipulation.. 5
Input/Output Instructions.. .. . 6
CPU Control Instructions... 7
Extended Instructions... 7
Processor F la g s ... 8
Condition C o d e s .. 9
Instruction Interrupts and Traps . .. 9
Notation and Binary Encoding............................ 10
Z8000 Instruction Descriptions and Form ats.. 13

EPA Instruction T em plates... 169
Programmers Quick R eference...173

Instruction Set
Introduction

This Manual describes the instruction set of
the Z8000. An overview of the instruction set is
presented first, in which the instructions are
divided into ten functional groups. The
instructions in each group are listed, followed
by a summary description of the instructions.
Significant characteristics shared by the
instructions in the group, such as the available
addressing modes, flags affected, or inter-
ruptibility, are described. Unusual instructions
or features that are not typical of predecessor
microprocessors are pointed out.

Following the functional summary of the
instruction set, flags and condition codes are

discussed in relation to the instruction set. This
is followed by a section discussing interrupt-
ibility of instructions and a description of
traps. The last part of this chapter consists,of a
detailed description of each Z8000 instruction,
listed in alphabetical order. This section is
intended to be used as a reference by Z8000
programmers. The entry for each instruction
includes a description of the instruction,
addressing modes, assembly language mne
monics, instruction formats, execution times'
and simple examples illustrating the use of the
instruction.

Functional Summary

This section presents an overview of the
Z8000 instructions. For this purpose, the
instructions may be divided into ten functional
groups:
■ Load and Exchange
■ Arithmetic
■ Logical
■ Program Control
■ Bit Manipulation
■ Rotate and Shift
■ Block Transfer and String Manipulation
■ Input/Output
■ CPU Control
■ Extended Instructions

The Load and Exchange group includes,a
variety of instructions that provide for move
ment of data between registers, memory, and
the program itself (i.e ., immediate data). These
instructions are supported with the widest
range of addressing modes, including the Base
(BA) and the Base Index (BX) mode which are
available here only. None of these instructions
affect any of the CPU flags.

The Load and Load Relative instructions
transfer a byte, word, or long word of data
from the source operand to the destination
operand. A special one-word instruction, LDK,

is also included to handle the frequent require
ment for loading a small constant (0 to 15) into
a register. -

Load and Exchange Instructions.
Instruction Operand(s) Name of Instruction
CLR
CLRB

dst Clear

EX dst, src Exchange
EXB
LD dst, src Load
LDB
LDL
LDA dst, src Load Address
LDAR dst, src Load Address Relative
LDK dst, src Load Constant
LDM dst, src, num Load Multiple
LDR
LDRB
LDRL

dst, src Load Relative

POP
POPL

dst, src Pop

PUSH dst, src Push
PUSHL

These instructions basically provide one of
the following three functions:
■ Load a register with data from a register or

a memory location.

1

■ Load a memory location with data from a
register.

■ Load a register or a memory location with
immediate data.

The memory location is specified using any
of the addressing modes (IR, DA, X, BA,
BX, RA).

The Clear and Clear Byte instructions can
be used to clear a register or memory location
to zero. While this is functionally equivalent to
a Load Immediate where the immediate data is
zero, this operation occurs frequently enough
to justify a special instruction that is more
compact and faster.

The Exchange instructions swap the contents
of the source and destination operands.

The Load Multiple instruction provides for
efficient saving and restoring of registers. This
can significantly lower the overhead of pro
cedure calls and context switches such as
those that occur at interrupts. The instruction
allows any contiguous group of 1 to 16 regis
ters to be transferred to or from a memory
area, which can be designated using the DA,
IR or X addressing modes. (RO is considered to
follow R 15, e .g ., one may save R9-R15 and
R0-R3 with a single instruction.)

Stack operations are supported by the
PUSH, PUSHL, POP, and POPL instructions.
Any general-purpose register (or register pair
in segmented mode) may be used as the stack
pointer except RO and RRO. The source
operand for the Push instructions and the
destination operand for the Pop instructions
may be a register or a memory location,
specified by the DA, IR, or X addressing
modes. Immediate data can also be pushed
onto a stack one word at a time. Note that byte
operations are Nnot supported, and the stack
pointer register must contain an-even value
when a stack instruction is executed. This is
consistent with the general restriction of using
even addresses for word and long word
accesses.

The Load Address and Load Address Rela
tive instructions compute the effective address
for the DA, X, BA, BX and RA modes and
return the value in a register. They are use
ful for management of complex data structures.

The Arithmetic group consists of instructions
for performing integer arithmetic. The basic

Functional Summary (Continued)

instructions use standard two's complement
binary format and operations. Support is also
provided for implementation of BCD
arithmetic.

Arithmetic Instructions
Instruction Operand(s) Name of Instruction
ADC
ADCB

dst, src Add with Carry

ADD
ADDB
ADDL

dst, src Add

CP
CPB
CPL

dst, src Compare

DAB dst Decimal Adjust
DEC
DECB

dst, src Decrement

DIV
DIVL

dst, src Divide

EXTS
EXTSB
EXTSL

dst Extend Sign

INC
INCB

dst, src Increment

MULT
MULTL

dst, src Multiply

NEG
NEGB

dst Negate

SBC
SBCB

dst, src Subtract with Carry

SUB
SUBB
SUBL

dst, src Subtract

Most oi the instructions in this group per
form an operation between a register operand
and a second operand designated by any. of
the fiveUasic addressing modes, and load the
result into the register.

The arithmetic instructions in general alter
the C, Z, S and P/V flags, which can then be
tested by subsequent conditional jump instruc
tions. The P/V flag is used to indicate arith
metic overflow for these instructions and it is
referred to as the-V (overflow) flag. The byte
version of these instructions generally alters
the D and H flags as well.

The basic integer (binary) operations are
performed on byte, word or long word oper
ands, although not all operand sizes are sup
ported by all instructions. Multiple precision
operations can be implemented in software
using the Add with Carry, (ADC, ADCB),

2

Subtract with Carry (SBC , SBCB) and Extend
Sign (EXTS, EXTSB, EXTSL) instructions.

BCD operations are not provided directly,
but can be implemented using a binary addi
tion (ADC, ADCB) or subtraction (SUBB,
SBCB) followed by a decimal adjust instruc
tion (DAB).

The Multiply and Divide instructions perform
signed two's complement arithmetic on word or
long word operands. The Multiply instruction
(MULT) mutliplies two 16-bit operands and
produces a 32-bit result, which is loaded into
the destination register pair. Similarly, Mult
iply Long (MULTL) multiplies two 32-bit oper
ands and produces a 64-bit result, which is
loaded into the destination register quadruple.
An overflow condition is never generated by a
multiply, nor can a true carry be generated.
The carry flag is used instead'to indicate
where the product has too many significant bits
to be contained entirely in the low-order half
of the destination.

The Divide instruction (DIV) divides a 32-bit
number in the destination register pair by a
16-bit source operand and loads a 16-bit quo
tient into the, low-order half of the destination
register. A 16-bit remainder is loaded into the
high-order half. Divide Long (DIVL) operates
similarly with a 64-bit destination register
quadruple and a 32-bit source. The overflow
flag is set if the quotient is bigger than the
low-order half of the destination, or if the
source is zero.
Logical Instructions.

Functional Summary (Continued)

Instruction Operand(s) Name of Instruction
AND
ANDB

dst, src And

COM
COMB

dst Complement

OR dst, src Or
ORB
TEST
TESTB
TESTL

dst Test

XOR
XORB

dst, src Exclusive Or

The instructions in this group perform logi-
cal operations on each of the bits of the oper
ands. The operands may be bytes or words;
logical operations on long word are not sup
ported (except for TESTL) but are easily imple

mented with pairs of instructions.
The two-operand instructions, And (AND,

ANDB), Or (OR, ORB) and Exclusive-Or
(XOR,XORB) perform the appropriate logical
operations on corresponding bits of the desti
nation register and the source operand, which
can be designated by any of four basic add
ressing modes (R, IR, DA, IM, X). The result is
loaded into the destination register.

Complement (COM, COMB) complements
the bits of the destination operand. Finally,
Test (TEST, TESTB, TESTL) performs the OR
operation between the destination operand and
zero and sets the flags accordingly. The Com
plement and Test instructions can use four
basic addressing modes to specify the
destination.

The Logical instructions set the Z and S flags
based on the result of the operation. The byte
variants of these instructions also set the Parity
Flag (P/V) if the parity of the result is even,
while the word instructions leave this flag
unchanged. The H and D flags are not affected
by these instructions.

Program Control Instructions.
Instruction Operand(s) Name of Instruction
CALL dst Call Procedure

CALR dst Call Procedure Relative

DJNZ r, dst Decrement and Jump if
DBJNZ Not Zero

IRET Interrupt Return

JP cc, dst Jump

JR cc, dst Jump Relative

RET cc Return from Procedure
SC src System Call

This group consists of the instructions that
affect the Program Counter (PC) and thereby
control program flow. General-purpose
registers and memory are not altered except
for the processor stack pointer and the pro
cessor stack, which play a significant role in
procedures and interrupts. (An exception is
Decrement and Jump if Not Zero (DJNZ), which
uses a register as a loop counter.) The flags
are also preserved except for IRET which
reloads the program status, including the
flags, from the processor stack.

The Jump (JP) and Jump Relative (JR)
instructions provide a conditional transfer of
control to a new location if the processor flags

3

stati'sfy the condition specified in the condition
code field of the instruction. Jump
Relative is a one-word instruction that will
jump to any instruction within the range -254
to +256 bytes from the current location. Most
conditional, jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to
improve code compactness and efficiency.

Call and Call Relative are used for calling
procedures; the current contents of the PC are
pushed onto the processor stack, and the effec
tive address indicated by the instruction is
loaded into the PC. The use of a procedure
address stack in this manner allows straight
forward implementation of nested and recur
sive procedures. Like Jump Relative, Call
Relative provides a one^word instruction for
calling nearby subroutines. However, a much
larger range, -4092 to +4098 bytes for CALR
instruction, is provided since subroutine,calls
exhibit less locality than normal control
transfers.

Both Jump and Call instructions are
available with the indirect register, indexed
and relative address modes in addition to the
direct address mode. These can be useful for
implementing complex control structures such
as dispatch tables.

The Conditional Return instruction is a com
panion to the Call instruction; if the condition
specified in the instruction is satisfied, it loads
the PC from the stack and pops the stack.

A special instruction, Decrement and Jump
if Not Zero (DJNZ, DBJNZ), implements the
control part of the basic PASCAL FOR loop in
a one-word instruction.

System Call (SC) is used for controlled
access to facilities provided by the operating
system. It is implemented identically to a trap
or interrupt: the current program status is
pushed onto the system processor stack fol
lowed by the instruction itself, and a new pro
gram status is loaded from a dedicated part of
the Program Status Area. An 8-bit immediate
source field in the instruction is ignored by the
CPU hardware. It can be retrieved from the
stack by the software which, handles system
calls and interpreted as desired, for example
as an index into a dispatch table to implement
a call to one of the services provided by the
operating system.

Functional Summary (Continued)

Interrupt Return (IRET) is used for returning
from interrupts and traps, including system
calls, to the interrupted routines. This is a
privileged instruction.

Bit Manipulation Instructions
Instruction Operand! s) Name of Instruction
BIT
BITB

dst, src Bit Test

RES
RESB

dst, src Reset Bit

SET
SETB

dst, src Set Bit

TSET
TSETB

dst Test and Set

TCC
TCCB

cc, dst Test condition code

The instructions in this group are useful for
manipulating individual bits in registers or
memory. In most computers, this has to be
done using the logical instructions with suit
able masks, which is neither natural nor
efficient.

The Bit Set (SET, SETB) and Bit Reset (RES,
RESB) instructions set or clear a single bit in
the destination byte or word, which can be in
a register or in a memory location specified by
any of the five basic addressing modes. The
particular bit to be manipulated may be speci
fied statically by a value (0 to 7 for byte, 0 to
15 for word) in the instruction itself or it may
be specified dynamically by the contents of a
register, which could have been computed by
previous instructions. In the latter case, the
destination is restricted to a register. These
instructions leave the flags unaffected. The
companion Bit Test instruction (BIT, BITB)
similarly tests a specified bit and sets the Z flag
according to the state of the bit.

The Test and Set instruction (TSET, TSETB)
is useful in multiprogramming and multipro
cessing environments. It can be used for
implementing synchronization mechanisms
between processes on the same or differ
ent CPUs.

Another instruction in this group, Test Con
dition Code (TCC, TCCB) sets a bit in the des
tination register based on the state of the flags
as specified by the condition code in the
instruction. This may be used to control sub
sequent operation of the program after the
flags have been changed by intervening

4

instructions. It may also be used by language
compilers for generating boolean values.

Rotate and Shift Instructions.

Functional Summary (Continued)

Instruction Operand(s) Name oi Instruction
RL
RLB

dst, src Rotate Left

RLC
RLCB

dst, src Rotate Left through
Carry

RLDB dst, src Rotate Left Digit
RR
RRB

dst, src Rotate Right

RRC
RRCB

dst, src Rotate Right through
Carry

RRDB dst, src Rotate Right Digit
SDA
SDAB
SDAL

dst, src Shift Dynamic Arithmetic

SDL
SDLB
SDLL

dst, src Shift Dynamic Logical

SLA
SLAB
SLAL

dst, src Shift Left Arithmetic

SLL
SLLB
SLLL

dst, src Shift Left Logical

SRA
SRAB
SRAL v

dst, src Shift Right Arithmetic

SRL
SRLB
SRLL

dst, src Shift Right Logical

This group contains a rich repertoire of
instructions for shifting and rotating data
registers.

Instructions for shifting arithmetically or
logically in either direction are available.
Three operand lengths are supported: 8 , 16
and 32 bits. The amount of the shift, which
may be any value up to the operand length,
can be specified statically by a field in the
instruction or dynamically by the contents of a
register. The ability to determine the shift
amount dynamically is a useful feature, which
is not available in most minicomputers.

The rotate instructions will rotate the con
tents of a byte or word register in either direc
tion by one or two bits; the carry bit can be
included in the rotatipn. A pair of digit rota
tion instructions (RLDB, RRDB) are especially
useful in manipulating BCD data.

Block Transfer And String Manipulation
Instructions.
Instruction Operand(s) Name oi Instruction
CPD
CPDB

dst, src, r, cc Compare and Decrement

CPDRB dst, src, r, cc Compare, Decrement and
Repeat

CPI
CPIB

dst, src, r, cc Compare and Increment

CPIR
CPIRB

dst, src, r, cc Compare, Increment and
Repeat

CPSD
CPSDB

dst, src, r, cc Compare String and
Decrement

CPSDR
CPSDRB

dst, src, r, cc Compare String,
Decrement and Repeat

CPSI
CPSIB

dst, src, r, cc Compare String and
Increment

CPSIR
CPSIRB

dst, src, r, cc Compare String,
Increment and Repeat

LDD
LDDB

dst, src, r Load and Decrement

LDDR
LDRB

dst, src, r Load, Decrement and
Repeat

LDI
LDIB

dst, src, r Load and Increment

LDIR
LDIRB

dst, src, r Load, Increment and
Repeat

TRDB dst, src, r Translate and Decrement

TRDRB dst, src, r Translate, Decrement and
Repeat

TRIB dst, src, r Translate and Increment

TRIRB dst, src, r Translate, Increment and
Repeat

TRTDB srcl, src2, r Translate, Test and
Decrement

TRTDRB srcl, src2, r Translate, Test,
Decrement and Repeat

TRTIB srcl, src2, r Translate, Test and
Increment

TRTIRB srcl, src2, r Translate, Test, Increment
and Repeat

This is an exceptionally powerful group of
instructions that provides a full complement of
string comparison, string translation and block
transfer functions. Using these instructions, a
byte or word block of any. length up to 64K
bytes can be moved in memory; a byte or word
string can be searched until a given value is
found; two byte or word strings can be com
pared; and a byte string can be translated by
using the value of each byte as the address of

5

Functional Summary (Continued)

its own replacement in a translation table. The
more complex Translate and Test instructions
skip over a class of bytes specified by a
translation table, detecting bytes with values
of special interest.

All the operations can proceed through the
data in either direction. Furthermore, the
operations may be repeated automatically
while decrementing a length counter until it is
zero, or'they may operate on one storage unit
per execution with the Fength counter decre
mented by one and the source and destination
pointer registers properly adjusted. The latter
form is useful for implementing more complex
operations in software by adding other instruc
tions within a loop containing the block
instructions.

Any word register can be used as a length
counter in most cases. If the execution of the
instruction causes this register to be decre
mented to zero, the P/V flag is set. The auto
repeat forms of these instructions always leave
this flag set.

The D and H flags are not affected by any of
these instructions. The C and S flags are
preserved by all but the compare instructions.

These instructions use the Indirect Register
(IR) addressing mode: the source and destina
tion operands are addressed by the contents of
general-purpose registers (word registers in
nonsegmented mode and register pairs in seg
mented mode). Note that in the segmented
mode, only the low-order half of the register
pair gets incremented or decremented as with
all address arithmetic in the Z8000.

The repetitive forms of these instructions are
interruptible. This is essential since the repeti
tion count can be as high as 65,536 and the
instructions can take 9 to 14 cycles for each
iteration after the first one. The instruction can
be interrupted after any iteration. The address
of the instruction itself, rather than the next
one, is saved on the stack, and the contents of
the operand pointer registers, as well as the
repetition counter, are such that the instruc
tion can simply be reissued after returning
from the interrrupt without any visible dif
ference in its effect.

This group consists of instructions for trans
ferring a byte, word or block of data between
peripheral devices and the CPU registers or
memory. Two separate I/O address spaces with

16-bit addresses are recognized, a Standard
I/O address space and a Special I/O address
space. The latter is intended for use with
special Z8000 Family devices, typically the
Z-MMU. Instructions that operate on the
Special I/O address space are prefixed with
the word "special." Standard I/O*and Special
I/O instructions generate different codes on
the CPU status lines. Normal 8-bit peripherals

Input/Output Instructions.
Instruction Oporand(s) Name of Instruction
IN
INB

dst, sre Input .

IND
INDB

dst, sre, r Input and Decrement

INDR
INDRB

dst, sre, r Input, Decrement and
Repeat ,

INI
INIB

dst, sre, r Input and Increment

INIR
INIRB

dst, sre, r Input, Increment and
Repeat

OTDR
OTDRB

dst, sre, r Output, Decrement and
Repeat

OTIR
OTIRB

dst, sre, r Output, Increment and
Repeat

OUT
OUTB

dst, sre Output

OUTD
OUTDB

dst, sre, r Output and Decrement

OUTI
OUTIB

dst, sre, r Output and Increment

SIN
SINB

dst, sre Special Input

SIND
SINDB

dst, sre, r Special Input and
Decrement

SINDR
SINDRB

dst, sre, r Special Input, Decrement
and Repeat

SINI
SINIB

dst, sre, r Special Input and
Increment

SINIR
SINIRB

dst, sre, r Special Input, Increment
and Repeat

SOTDR
SOTDRB

dst, sre, r Special Output,
Decrement and Repeat

SOTIR
SOTIRB

dst, sre, r Special Output,
Increment and Repeat

SOUT
SOUTB

dst, sre Special Output

SOUTD
SOUTDB

dst, sre, r Special Output and
Decrement

SOUTI
SOUTIB

dst, sre, r Special Output and
Increment

6

Functional Summary (Continued)

are connected to bus lines AD0-AD7. Standard
I/O byte instructions use odd addresses only.
Special 8-bit peripherals such as the MMU,
which are used with special I/O instructions,
are connected to bus lines ADq-A D is . Special
I/O byte instructions use even addresses only.

The instructions for transferring a single
byte or word (IN, INB, OUT, OUTB, SIN,
SINB, SOUT, SOUTB) can transfer data
between any general-purpose register and any
port in either address space. For the Standard
I/O instructions, the port number may be
specified statically in the instruction or dynam
ically by the contents of the CPU register. For
the Special I/O instructions the port number is
specified statically.

The remaining instructions in this group
form a powerful and complete complement of
instructions for transferring blocks of data
between I/O ports and memory. The operation
of these instructions is very similar to that of
the block move instructions described earlier,
with the exception that one operand is always
an I/O port which remains unchanged as the
address of the other operand (a memory loca
tion) is incremented or decremented. These
instructions are also interruptible.

CPU Control Instructions.
Instruction Operand(s) Name of Instruction
COMFLG flag Complement Flag

DI int Disable Interrupt

El int Enable Interrupt

HALT Halt

LDCTL
LDCTLB

dst, src Load Control Register

LDPS src Load Program Status

MBIT Multi-Micro Bit Test

MREQ dst Multi-Micro Request

MRES Multi-Micro Reset

MSET Multi-Micro Set

NOP No Operation

RESFLG flag Reset Flag

SETFLG flag Set Flag

All I/O instructions are privileged, i.e. they
can only be executed in system mode. The
single byte/word I/O instructions don't alter
any flags. The block I/O instructions, includ
ing the single iteration variants, alter the Z and
P/V flags. The latter is set when the repetition
counter is decremented to zero.

The instructions in- this gi'oup relate to the
CPU control and status registers (FCW, PSAP,
REFRESH, etc.), or perform other unusual
functions that do not fit into any of the other
groups, such as instructions that support multi
microprocessor operation. Most of these
instructions are privileged, with the exception
of NOP and the instructions operating on the
flags (SETFLG, RESFLG, COMFLG,
LDCTLB).

Extended Instructions. The Z8000
architecture includes a powerful mechanism
for extending the basic instruction set through
the use of external devices known as Extended
Processing Units (EPUs). A group of
six opcodes, OE, OF, 4E, 4F, 8E and 8F (in
hexadecimal), is dedicated for the implemen
tation of extended instructions using this facil
ity. The five basic addressing modes (R, IR,
DA, IM and X) can be used by extended
instructions for accessing data for the EPUs.

There are four types of extended instructions
in the Z8000 CPU instruction repertoire: EPU
internal operations; data transfers between
memory and EPU; data transfers between EPU
and CPU; and data transfers between EPU flag
registers and CPU flag and control word. The
last type is useful when the program must
branch based on conditions determined by the
EPU. The action taken by the CPU upon
encountering extended instructions is depen
dent upon the EPA control bit in the CPU's
FCW. When this bit is set, it indicates that the
system configuration includes EPUs; therefore,
the instruction is executed. If this bit is clear,
the CPU traps (extended instruction trap) so
that a trap handler in software can emulate the
desired operation.

7

Processor Flags

The processor flags are a part of the pro
gram status, They provide a
link between sequentially executed instructions
in the sense that the result of executing one
instruction may alter the flags, and.the
resulting value of the flags may be used to
determine the operation of a subsequent
instruction, typically a conditional jump
instruction. An example is a Test followed by a
Conditional Jump:

TEST R1 !sets Z flag if R1 = 0!
JR Z, DONE !go to DONE if Z flag is

set!

DONE:
The program branches to DONE if the TEST

sets the Z flag, i.e ., if R1 contains zero.
The program status has six flags for the use

of the programmer and the Z8000 processor:
■ Carry (C)
H Zero (Z)
■ Sign (S)
■ Parity/Overflow (P/V)
■ Decimal Adjust (D)
■ Half Carry (H)

The flags are.modified by many instructions,
including the arithmetic and logical
instructions.

Appendix C lists the instructions and the
flags they affect. In addition, there are Z8000
CPU control instructions which allow the pro
grammer to set, reset (clear), or complement
any or all of the first four flags. The Half-Carry
and Decimal-Adjust flags are used by the
Z8000 processor for BCD arithmetic correc
tions. They are not used explicitly by the pro- -
grammer.

The FLAGS register can be separately
loaded by the Load Control Register (LDCTLB)
instruction without disturbing the control bits
in the other byte of the FCW. The contents of
the flag register may also be saved in a reg
ister or memory.

The Carry (C) flag, when set, generally indi
cates a carry out of or a borrow into the high-
order bit position of a register being used as
an accumulator. For example, adding the 8-bit

numbers 225 and 64 causes a carry out of bit 7
and sets the Carry flag:

Bit
7 6 5 4 3 2 1 0

225 1 1 1 0 0 0 0 1
+ 64 0 1 0 0 0 0 0 0

289 r-o 0 1 0 0 0 0 1
^►l = Carry flag

The Carry flag plays an important role in the
implementation of multiple-precision arithmetic
(see the ADC, SBC instructions). It is also
involved in the Rotate Left Through Carry
(RLC) and Rotate Right Through Carry (RRC)
instructions. One of these instructions is used
to implement rotation or shifting of long strings
of bits.

The Zero (Z) flag is set when the result reg
ister's contents are zero following certain
operations. This is often useful for deter
mining when a counter reaches zero. In addi
tion, the block compare instructions use the Z
flag to indicate when the specified comparison
condition is satisfied.

The Sign (S) flag is set to one when the most
significant bit of a result register contains a
one (a negative number in two's complement
notation) following certain operations.

The Overflow (V) flag, when set, indicates
that a two's complement number in a result
register has exceeded the largest number or is
less than the smallest number that can be
represented in a two's complement notation.
This flag is set as the result of an arithmetic
operation. Consider the following example:

Bit
7 6 5 4 3 2 1 0

120 0 1 1 0 1 0 0 1
+ 105 0 1 1 0 1 0 0 1

225 r 1 1 1 0 0 0 0 1
L i = Overflow flag

The result in this case (-95 in two's comple-
ment notation) is incorrect, thus the overflow
flag would be set.

The same bit acts as a Parity (P) flag follow
ing logical instructions on byte operands. The
number of one bits in the register is counted
and the flag is set if the total is even (that is,
P = 1). If the total is odd (P = 0), the flag is
reset. This flag is often referred to as the
P/V flag.

8

Processor Flags (Continued)

The Block Move and String instructions and
the Block I/O instructions use the P/V flag to
indicate the repetition counter has decre
mented to 0.

The Decimal-Adjust (D) flag is used for BCD
arithmetic. Since the algorithm for correcting
BCD operations is different for addition and
subtraction, this flag is used to record whether
an add or subtract instruction was executed so
that the subsequent Decimal Adjust (DAB)
instruction can perform its function correctly
(See the DAB instruction for further discussion

on the use of this flag).
The Half-Carry (H) flag indicates a carry out

of bit 3 or a borrow into bit 3 as the result of
adding or subtracting bytes containing two
BCD digits each. This flag is used by the DAB
instruction to convert the binary result of a
previous decimal addition or subtraction into
the correct decimal (BCD) result.

Neither the Decimal-Adjust nor the Half
Carry flag is normally accessed by the pro
grammer.

Condition Codes

The first four flags, C, Z, S, and P/V, are
used to control the operation of certain "condi
tional" instructions such as the Conditional
Jump. The operation of these instructions is a
function of whether a specified boolean condi
tion on the four flags is satisfied or not. It
would take 16 bits to specify any of the 65,536
(216) boolean functions of the four flags. Since
only a very small fraction of these are general
ly of interest, this procedure would be very
wasteful. Sixteen functions of the flag settings
found to be frequently useful are encoded in a
4-bit field called the condition code, which

forms a part of all conditional instructions.
The condition codes and the flag settings

they represent are listed in Section 6.6 .
Although there are sixteen unique condition

codes, the assembler recognizes more than six
teen mnemonics for the conditional codes.
Some of the flag settings have more than one
meaning for the programmer, depending on
the context (PE & OV, Z & EQ, C & ULT,
etc.). Program clarity is enhanced by having
separate mnemonics for the same binary value
of the condition codes in these cases.

Instruction Interrupts and Traps

This section looks at the relation-ship between in
structions ans interrupts.

When the CPU receives an interrupt
request, and it is enabled for interrupts of that
class, the interrupt is normally processed at
the end of the current instruction. However,
certain instructions which might take a long
time to complete are designed to be interrupt
ible so as to minimize the length of time it
takes the CPU to respond to an interrupt.
These are the iterative versions of the String
and Block instructions and the Block I/O
instruction. If an interrupt request is received
during one of these interruptible instructions,
the instruction is suspended after the current
iteration. The address of the instruction itself,
rather than the address of the following
instruction, is saved on the stack, so that the
same instruction is executed again when the
interrupt handler executes an IRET. The con

tents of the repetition counter and the registers
which index into the block operands are such
that after each iteration when the instruction is
reissued upon returning from an interrupt, the
effect is the same as if the instruction were not
interrupted. This assumes, of course, the inter
rupt handler preserved the registers, which is
a general requirement on interrupt handlers.

The longest noninterruptible instruction that
can be used in normal mode is Divide Long
(749 cycles in the worst case). Multi-Micro
Request, a privileged instruction, can take
longer depending on the contents of the des
tination register.

Traps are synchronous events that result
from the execution of an instruction. The
action of the CPU in response to a trap condi
tion is similar to the case of an interrupt (see
Section 7). Traps are non-maskable.

9

The Z8000 CPUs implement four kinds of
traps:
■ Extended Instruction
■ Privileged Instruction in normal mode
■ Segmentation violation
■ System Call

The Extended Instruction trap occurs when
an Extended Instruction is encountered, but
the Extended Processor Architecture Facility is
disabled, i.e ., the EPA bit in the FCW is a
zero. This allows the same software to be run
on Z8000 system configurations with or without
EPUs. On systems without EPUs, the desired
extended instructions can be emulated by soft
ware which is invoked by the Extended
Instruction trap.

Instruction Interrupts and Traps (Continued)

Notation and Binary Encoding

The rest of this chapter consists of detailed
descriptions of each instruction, listed in
alphabetical order. This section describes the
notational conventions used in the instruction
descriptions and the binary encoding for some
of the common instruction fields (e .g ., register
designation fields).

The description of an instruction begins with
the instruction mnemonic and instruction name
in the top part of the page. Privileged instruc
tions are also identified at the top.

The assembler language syntax is then given
in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes.

Example:
AND dst, src dst: R
ANDB src: R, IM, IR, DA, X

The operation of the instruction is presented
next, followed by a detailed discussion of the
instruction.

The next part specifies the effect of the
instruction on the processor flags. This is
followed by a table that presents all the
variants of the instruction for each applicable
addressing mode and operand size. For each
of these variants, the following information is
provided:
A. Assembler Language Syntax. The syntax
is shown for each applicable operand width

The privileged instruction trap serves to pro
tect the integrity of a system from erroneous or
unauthorized actions of arbitrary processes.
Certain instructions, called privileged instruc
tions, can only be executed in system mode.
An attempt to execute one of these instructions
in normal mode causes a privileged instruction
trap. All the I/O instructions and most of the
instructions that operate on the FCW are
privileged, as are instructions like HALT
and IRET.

The System Call instruction always causes a
trap. It is used to transfer control to system
mode software in a controlled way, typically to
request supervisor services.

(byte, word or long). The invariant part of the
syntax is given in UPPER CASE and must
appear as shown. Lower case characters repre
sent the variable part of the syntax, for which
suitable values are to be substituted. The syn
tax shown is for the most basic form of the
instruction recognized by the assembler. For
example,

ADD Rd,#data
represents a statement of the form
ADD R3,#35. The assembler will also accept
variations like ADD TOTAL, #NEW-DELTA
where TOTAL, NEW and DELTA have been
suitably defined.

The following notation is used for register
operands:

Rd, Rs, etc.:

Rbd Rbs:

RRd RRs:

RQd:

a word register in the
range R0-R15
a byte register RHn or
RLn where n = 0 - 7
a register pair RRO, RR2,
... RR14
a register quadruple
RQO, RQ4, RQ8 or RQ12

The "s" or "d" represents a source or destina
tion operand. Address registers used in
Indirect, Base and Base Index addressing
modes represent word registers in nonseg-
mented .mode and register pairs in segmented
mode. A one-word register used in segmented

10

Notation and Binary Encoding (Continued)

mode is flagged and a footnote explains the
situation.

B. Instruction Format. The binary encoding of
the instruction is given in each case for both
the nonsegmented and segmented modes..
Where applicable, both the short and long
forms of the segmented version are given (SS
and SL). •

The instruction formats for byte and word
versions of an instruction are usually com
bined. A single bit, labeled "w," distinguishes
them: a one indicates a word instruction, while
a zero indicates a byte instruction.

Fields specifying register operands are
identified with the same symbols (Rs, RRd,
etc.) as in Assembler Language Syntax. In
some cases, only nonzero values are permitted
for certain registers, such as index registers.
This is indicated by a notation of the form
"RS =£ 0."

The binary encoding for register fields is as
follows:

Rogistor Binary
RRO RO RHO 0000

R1 RH1 0001
RR2 R2 RH2 0010

R3 RH3 0011

Register
RQ4 RR4 R4

R5
RR6 R6

R7
RQ8 RR8 R8

R9
RR10 R10

R11
RQ12 RR12 R12

R13
RR14 R14

R15

RH4
Binary

0100
<RH5 0101
RH6 0110
RH7 0111
RL0 1000
RL1 1001
RL2 1010
RL3 1011
RL4 1100
RL5 1101
RL6 1110
RL7 m i

For easy cross-references, the same symbols
are used in the Assembler Language Syntax
and the instruction format. In the case of ad
dresses, the instruction format in segmented
mode uses "segment" and "offset" to corres
pond to "address," while the instruction format
contains "displacement," indicating that the
assembler has computed the displacement and
inserted it as indicated.

A condition code is indicated by "cc " in
both the Assembler Language Syntax and the
instruction formats. The condition codes, the
flag settings they represent, and the binary
encoding in the instruction are as follows:

11

Notation and Binary Encoding (Continued)

Code Meaning Flag Setting Binary
F Always false

Always true
0000
1000

Z Zero Z = 1 0110
NZ Not zero Z = 0 1110
C Carry C = 1 0111
NO No carry C = 0 m i
PL Plus S = 0 1101
MI Minus S = 1 0101
NE Not equal Z = 0 1110
EQ Equal Z = 1 . 0110
OV Overflow V = 1 0100
NOV No overflow V = 0 1100
PE Parity even p = .1 0100
PO Parity odd P = 0 1100
GE Greater than

or equal
(S XOR V) = 0 1001

LT Less than (S XOR V) = 1 0001
GT Greater than (Z OR (S XOR V)) = 0 1010
LE Less than or

equal
(Z OR (S XOR V)) = 1 0010

UGE Unsigned
greater than
or equal

C = 0 i n i

ULT Unsigned
less than

C = 1 0111

UGT Unsigned
greater than

((C =0) AND (Z = 0)) = 1 ion

ULE Unsigned less
than or equal

(C OR Z) = 1 odn

Note that some of the condition codes correspond to identical flag settings: i.e .(Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

C. Cycles. This line gives the execution time
of the instructions in CPU cycles.

D. Exam ple. A short assembly language
example is given showing the use of the
instruction.

12

Z8000
Instruction
Descriptions
and Formats

ADC
Add With Carry

ADCdst, src dst: R
ADCB src: R

Operation: dst dst + src + c

The source operand, along with the setting of the carry flag, is added to the destina
tion operand and the sum is stored in the destination. The contents of the source are
not affected. Two's complement addition is performed. In multiple precision arith
metic, this instruction permits the carry from the addition of low-order operands to
be carried into the addition of high-order operands.

Flags: C: Set if thereus a carry from the most significant bit of the result; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADC—unaffected; ADCB—cleared
H: ADC—unaffected; ADCB—set if there is a carry from the most significant bit of

the low-order four bits of the result; cleared otherwise

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

ADC Rd, Rs
ADCB Rbd, Rbs

R:
|i o |i i o i o |w | Rs | Rd | 5 |io|noio|w| Rs | Rd | 5

Example: Long addition can be done with the following instruction sequence, assuming RO, R1
contain one operand and R2, R3 contain the other operand:

ADD R1,R3 ladd low-order words!
ADC R0,R2 ladd carry and high-order words!

If RO contains %0000, R1 contains %FFFF, R2 contains %4320 and R3 contains
%0001, then the above two instructions leave the value %4321 in RO and %0000
in Rl.

13

ADD
Add

dst: R
src: R, IM, IR, DA, X

ADD dst, src
ADDB
ADDL

Operation: dst m - dst + src '

The source operand is added to the destination operand and the sum is stored in the
destination. The contents of the source are not affected. Two's complement addition
is performed.

Flags: C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: ADD, ADDL—unaffected; ADDB—cleared
H: ADD, ADDL—unaffected; ADDB—set if there is a carry from the most significant

bit of the low-order four bits of the result; cleared otherwise

Source
Addressing Assembler Language

Mode Syntax

R: ADD Rd, Rs
ADDB Rbd, Rbs

ADDL RRd, RRs

Nonsegmented Mode

Instruction Format

10 0 0 0 01WI Rs | Rd |

[o i Q 1 1 0 | RRs | RRd |

Cycles

4

8

Segmented Mode

Instruction Format

h i

?00000 Rs | Rd |

L i ! I 0 10110 | RRs | RRd |

Cycles

4

8

IM: ADD Rd, #data

ADDB Rbd, #data

ADDL RRd, #data

IR: ADD Rd, @RSi
ADDB Rbd, @Rsi
ADDL RRd, @Rsi

|oo|ooooow| Rs*0 | Rd |

10 0 1 0 1 0 1 1 0 | Rs*0 | RRd |

loo © 0 0 0 Rs*0 | Rd |

10 0 I 0 1 0 1 1 0 | Rs*0 [RRd |

14

ADD
Add

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

DA:

X:

ADD Rd(address
ADDB Rbd, address

ADDL RRd, address

ADD Rd, addr(Rs)
ADDB Rbd, addr(Rs)

ADDL RRd, addr(Rs)

01 0 0 0 0 0 W 0 0 0 0 Rd

0 1 0 1 0 1 1 0 0 0 0 0 RRd

01 0 1 0 1 1 0 Rs*0 RRd

01 |00000|w| Rs* 0 | Rd

address

16

SS
01

_5_ooooo

0 0 0 0 I Rd

o| segment offset

15

10

SL

SS

SL

S S

SL

SS

SL

oi|ooooo|w 0 0 0 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

0 1 1 0 1 0 1 1 0 0 0 0 0 | RRd

0 1 segment offset

0 1] 0 1 0 1 1 0 0 0 0 0 | RRd

1 segment 0 0 0 0 0 0 0 0

offset

01 |ooooo|w Rs* 0 | Rd

0 | segment offset

o 1 |oopoo|w Rs*0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

0 1 | 0 1 0 1 1 0 Rs*0 | RRd

0 1 segment offset

01 | 0 1 0 1 1 0 Rs*0 | RRd

1 | segment 0 0 0 0 0 0 0 0

offset

10

12

16

18

10

13

16

19

Example: ADD R2, AUGEND laugend A located at %1254!
Before instruction execution:

Memory R2 Flags

| B D 2 1 | C Z S P A / O H

c z s p d h

1252 _______

1254 0 6 4 4

1256

After instruction execution:

Momory R2 Flags

1252 |c 3 6 5] C Z S P/V D H
1254 0 6 4 4 0 0 10 d h
1256

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

15

AND
And

AND dst, src
ANDB

dst: R
src: R, IM, IR, DA, X

Operation: dst dst AND src

• A logical AND operation is performed between the corresponding bits of the source
and destination operands, and the result is stored in the destination. A one bit is
stored wherever the corresponding bits in the two operands are both ones; otherwise
a zero bit is stored. The source contents are not affected.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: AND — unaffected; ANDB — set if parity, of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R: AND Rd, Rs
ANDB Rbd, Rs

IM: AND Rd, #data

ANDB Rbd, #data

IR: AND Rd, @Rsi
ANDB Rbd, @RS1

DA: AND Rd, address
ANDB Rbd, address

X: AND. Rd, addr(Rs)
ANDB Rbd, addr(Rs)

11 o |o o011 W Rs Rd

0 0 000 1 1 1 | 0 0 0 0 | Rd

data

0 0 | 0 00 1 1 0 0 0 0 0 | Rd

data data

00 0 001 1 W Rs^O Rd

01 |o 0 0 1 1 W 0 0 0 0 | Rd

address

0 l | 0001 l|w| Rs*o| Rd

address
10

1 0 0001 1 W Rs Rd

o o | 0 0 0 1 1 1 | oooo [Rd

data

0 0 | 0001 1 0 0 0 0 0 | Rd

data data

00 00 0 1 1 W Rs * 0 Rd

10

12

10

13

16

Example:

AND
And

ANDB RL3(i %CE

Before instruction execution:
RL3 Flags

| 11 1 0 0 111 | C Z S P/V D H
c z s p d h

After instruction execution:
RL3 Flags

| 1 1 0 0 0 1 1 0 | C Z S P/V D H

c 0 1 1 d h

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

17

BIT
Bit Test

BIT dst, src
BITB

dst: R, IR, DA, X
src: IM
or
dst: R
src: R

Operation: Z ■+- NOT dst (src)

The specified bit within the destination operand is tested, and the Z flag is set to one
if the specified bit is zero; otherwise the Z flag is cleared to zero. The contents of the
destination are not affected. The bit number (the source) can be specified statically
as an immediate value, or dynamically as a word register whose contents are the bit
number. In the dynamic case, the destination operand must be a register, and the
source operand must be RO through R7 for BITB, or RO through R15 for BIT. The bit
number is a value from 0 to 7 for BITB, or 0 to 15 for BIT, with 0 indicating the least
significant bit. Note that only the lower four bits of the source operand are used to
specify the bit number for BIT, while only the lower three bits of the source operand
are used for BITB.

Flags: C: Unaffected
Z: Set if specified bit is zero; cleared otherwise
S: Unaffected
V: Unaffected
D: Unaffected
H: Unaffected

Bit Test Static

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IR:

BIT Rd, b
BITB Rbd, b

BIT @Rdi, b
BITB &Rdl, b

1 0 1 0 0 1 1 W Rd b

00 1 0 0 1 1 W Rd*0 b

10 1 0 0 1 1 W Rd b

00 1 001 1 W Rd*0 b

DA: BIT address, b
BITB address, b

01 1 0 01 i|w 0 0 0 0 | b
0 1 segment offset

0 1 1 0 0 1 11W|0 0 0 0 | b

address

01 |l 001 i|w oooo| b
1 segment 0000 0000

offset

18

Bit Test Static (Continued)

BIT
Bit Test

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X: BIT addr(Rd), b
BITB addr(Rd), b

R: BIT Rd, Rs
BITB Rbd, Rs

0 1 11 0 011 | W| Rd*0 | b

address

00 1 00 1 1 W 0 0 0 0 Rs

0 0 0 0 | Rd 0 0 0 0 0 0 0 0

Example: If register RH2 contains %B2 (10110010), the instruction
BITB RH2, #0

will leave the Z flag set to 1.

Note 1: Word register in. nonsegmented mode, register pair in segmented mode.

19

CALL
Call

CALL dst dst: IR, DA, X

Operation: Nonsegmented
SP SP - 2
C -► SP PC
PC — dst

Segmented
SP SP - 4
@SP PC
PC dst

Flags:

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 in nonsegmented mode, or RR14 in
segmented mode. (The program counter value used is the address of the first instruc
tion byte following the CALL instruction.) The specified destination address is then
loaded into the PC and points to the first instruction of the called procedure.
At the end of the procedure a RET instruction can be used to return to original pro
gram. RET pops the top of the processor stack back into the PC.

No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax '

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR:

DA:

CALL Rd!

CALL address

H 0 1 1 1 1 1 | Rd I 0 0 0 0 |

01l0 1 1 1 1 1 I 0 0 0 0 I 0 0 0 0

address

10

12

0 0 0 1 1 1 1 1 Rd 0 0 0 0

X: CALL addr(Rd)
01 I 01 1 111 | Rd*0 | 0 0 0 0

ss

SL

SS

SL

0 1 | 0 1 1 1 1 1 0 0 0 0 | 0 0 0 0

0 1 segment offset

0 1 | 0 1 1 1 1 1 oooo|oooo
1 segment 0 0 0 0 0 0 0 0

offset

0 1 1 01 1 1 1 1 Rs*0 | 0 0 0 0

0 segment offset

0 1 | 01 1 1 1 1 Rs*0 | 0 0 0 0

1 | segment 0 0 0 0 0 0 0 0

15

18

20

18

21

Example: In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALL %2520
causes the stack pointer to be decremented to %3000, the value % 1004 (the address
following the CALL instruction with direct address mode specified) to be loaded into
the word at location %3000, and the program counter to be loaded with the value
%2520. The program counter now points to the address of the first instruction in the
procedure to be executed.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

20

CALR
Call Relative

CALRdst dst: RA

Operation: Nonsegmented Segmented
SP SP - 2 SP SP - 4
@SP PC @SP PC
PC ««- PC - (2 x displacement) PC «*- PC - (2 x displacement)

The current contents of the program counter (PC) are pushed onto the top of the
processor stack. The stack pointer used is R15 if nonsegmented, or RR14 if
segmented. (The program counter value used is the address of the first instruction
byte following the CALR instruction.) The destination address is calculated and then
loaded into the PC and points to the first instruction of a procedure.
At the end of the procedure a RET instruction can be used to return to the original
program flow. RET pops the top of the processor stack back into the PC.
The destination address is calculated by doubling the displacement in the
instruction, then subtracting this value from the current value of the PC to derive the
destination address. The displacement is a 12-bit signed value in the range -2048 to
+2047. Thus, the destination address must be in the range -4092 to +4098 bytes
from the start of the CALR instruction. In segmented mode, the PC segment number
is not affected. The assembler automatically calculates the displacement by
subtracting the PC value of the following instruction from the address given by the
programmer.

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

RA: CALR address 10 15| 1 1 0 1 | displacement | | 1 1 0 1 | displacement |

Example: In nonsegmented mode, if the contents of the program counter are %1000 and the
contents of the stack pointer (R15) are %3002, the instruction

CALR PROC
causes the stack pointer to be decremented to %3000, the value %1004 (the address
following the CALR instruction) to be loaded into the word location %3000, and the
program counter to be loaded with the address of the first instruction in procedure
PROC.

21

CLR
Clear

CLR dst dst: R, IR, DA, X
CLRB

Operation: dst 0

The destination is cleared to zero.

Flags: No flags affected.

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IR:

DA:

X:

CLR Rd
CLRB Rbd

CLR @Rdf
CLRB @Rdi

CLR address
CLRB address

CLR addr(Rd)
CLRB addr(Rd)

1 0 00 1 1 0 W Rd * 0 1 0 0 0

00 00 1 1 0 W Rd * 0 1 0 0 0

1 0 001 1 0 W R d * 0 1 0 0 0

01 0 0 1 1 0 W 0 0 0 0 1 0 0 0
11

0 1 0 0 1 1 0 W Rd*0 1 0 0 0
12

00 001 1 0 W R d * 0 1 0 0 0

ss

SL

ss

SL

0 1 |o 0 1 1 o|w 0 0 0 0 |1 0 0 0

0 1 segment offset

01 |o 0 1 1 o w 0 0 0 0 |1 0 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

0 1 |o 0 1 1 o|w R d * 0 | 1 0 0 0

0 1 segment offset

01 |o o 11 o|w Rd*0 110 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

12

14

12

15

Example: If the word at location %ABBA contains 13, the statement
CLR %ABBA

will leave the value 0 in the word at location %ABBA.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

22

COM
Complement

COM dst dst: R, IR, DA, X
COMB

Operation: (dst NOT dst)

The contents of the destination are complemented (one's complement); all one bits
are changed to zero, and vice-versa.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: COM—unaffected; COMB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R: COM Rd
COMB Rbd

IR: COM c« Rdi
COMB <b Rdi

DA: COM address
COMB address

X: COM addr(Rd)
COMB addr(Rd)

1 0 001 1 0 W Rd * 0 0 0 0 0

10 0 j 0 0 1 1 0 1W | Rd * 0 1 0 0 0 0 |

0 1 |0 0 1 1 01 w | oooo|oooo
address

01 |o 0 1 1 o| W | Rd*0 | 0 0 0 0

address

7

12

15

16

|1 o|o 0 1 1 o|w |R d * 0 1 0 0 0 0 |

|oo|oono|w|Rd*o|oooo|

0 1 10 0 1 1 o w oooo|oooo
o] segment offset

0 1 10 0 1 1 o| w 0 0 0 0 I 0 0 00

1 1 segment 0 0 0 0 0 0 0 0

offset

0 1 |o 0 1 1 o|w R d * 0 | 0 0 0 0

0 segment offset

0 1 10 0 1 1 ow R d * 0 | 0 0 0 0

1 1 segment 0 0 0 0 0 0 0 0

offset

7

12

16

18

16

19

Example: If register R1 contains %2552 (0010010101010010), the statement
COM R1

will leave the value %DAAD (1101101010101101).in Rl.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

23

COM FLG
Complement Flag

COMFLG flag Flag: C, 2, S, P, V
FLAGS (4:7) FLAGS (4:7) XOR instruction (4:7)

Operation: Any combination of the C, Z, S, P or V flags is complemented (each one bit is
changed to zero, and vice-versa). The flags to be complemented are encoded in a
field in the instruction. If the bit in the field is one, the corresponding flag is com
plemented; if the bit is zero, the flag is left unchanged. Note that the P and V flags
are represented by the same bit. There may be one, two, three or four operands in
the assembly language statement, in any order.

Flags: C: Complemented if specified; unaffected otherwise
Z: Complemented if specified; unaffected otherwise
S: Complemented if specified; unaffected otherwise
P/V: Complemented if specified; unaffected otherwise
D: Unaffected
H: Undefined

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

COMFLG flags 7 7| 1 0 0 0 1 1 0 1 |c z s p /v | o i 0 1 | | 1 0 0 0 1 1 0 1 |c z s p /v | 0 1 0 1 |

Example: If the C, Z, and S flags are all clear (=0), and the P flag is set (= 1), the statement
COMFLG P, S, Z, C

will leave the C, Z, and S flags set (= 1), and the P flag cleared (= 0).

24

CP
Compare

CP dst, src
CPB
CPL

dst: R
src: R(IM, IR, DA, X
or
dst: IR, DA, X
src: IM

Operation: dst - src

Flags:

The source operand is compared to (subtracted from) the destination operand, and
the appropriate flags set accordingly, which may then be used for arithmetic and
logical conditional jumps. Both operands are unaffected, with the only action being
the setting of the flags. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. There are two variants of this instruc
tion: Compare Register compares the contents of a register against an operand
specified by any of the five basic addressing modes; Compare Immediate performs a
comparison between an operand in memory and an immediate value.

C: Cleared if there is a carry from the most significant bit of the result; set other
wise, indicating a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Compare Register

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IM:

IR:

CP Rd, Rs
CPB Rbd, Rbs

CPL RRd, RRs

CP Rd, #data

CPB Rbd, #data

CPL RRd, #data

CP Rd, @Rsl
CPB Rbd, @Rsl

CPL RRd, @Rsi

1 0 0 01 01 W Rs Rd

1 0 01 0 0 0 0 Rs Rd

1 0 001 01 W Rs

1 0 0 1 0 0 0 0 Rs Rd

0 0 | 0 0 1 0 1 1 | 0 0 0 0 | Rd

data

o o [0 0 1 0 1 1 | 0 0 0 0 | Rd

data

0 0 | 0 0 1 0 1 0 0 0 0 0 | Rd

data data

0 0 | 0 0 1 0 1 0 0 0 0 0 Rd

data data

0 0 0 1 0 0 0 0 0 0 0 0 Rd

data (high)

data (low)

0 0 0 1 9 0 0 0 0 0 0 0 Rd

31 data (high)

data (low)

00 0 0 1 0 1 W Rs* 0 Rd

00 0 1 0 0 0 0 Rs* 0 Rd

7

14

00 0 0 1 0 1 W Rs*0 Rd

0 0 0 1 0 0 0 0 Rs*0 Rd

14

7

14

25

CP
Compare

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

DA:

X:

CP Rd, address
CPB Rbd, address

CPL RRd, address

CP Rd, addr(Rs)
CPB Rbd, addr(Rbs)

CPL RRd, addr(Rs)

01 00101 W 0000 Rd

01 0 1 0 0 0 0 R s * 0 Rd

0 1 1 0 1 0 0 0 0 | 0 0 0 0 | Rd

address

0 1 10 0 1 0 1 1W | Rs*0 | Rd

address

15

10

16

ss

SL

SS

SL

SS

SL

SS

SL

0 1 | 0 0 1 0 l| W 0 0 0 0 | Rd

0 1 segment offset

0 1] 0 0 1 oi|w 0 0 0 0 | Rd

1 segment 0000 0000

offset

0 11 01 0 0 0 0 0 0 0 0 | Rd

0 1 segment offset

0 1 | 01 0 0 0 0 00 00 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

01 0 0 1 0 1 w Rs * 0 | Rd

0] segment offset

0 1 10 0 1 0 l| w Rs * 0 j Rd

1 | segment 0 0 0 0 0 0 0 0

offset

0 1 | 0 1 0 0 0 0 Rs*0 | Rd

0 1 segment offset

0 1 | 0 1 0 0 0 0 Rs*0 Rd

1 segment 0 0 0 0 0 0 0 0

offset

10

12

16

18

10

13

16

Compare Immediate
Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR: CP @RcU, #data

CPB @RcU, #data

0 010 0 1 1 01 W | Rd*0 | 0001

data

oo|oo 1 1 o| W R d * 0 | 0 0 0 1

data data

0 0 10 0 1 1 o| W | Rd * o| 0 0 0 1

data

o o | o o 1 1 o|w Rd*0]0001

data data

26

cp
Compare

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

DA:

X:

CP address, #data

CPB address, #data

CP addr(Rd), #data

CPB addr(Rd), #data

01)0011 o|w| 0000 [000 1
address

data

01 |o0 1 1 0 1w| 00 0 0 | 0 0 0 1

address

data data

Q l| o Q 1 1 o| W | Rd * o| 0001

address

data

0 110 0 1 1 o| W | Rd^tQ | 0001

address

data data

14

14

15

15

15

17

15

17

15

18

15

18

Example: If register R5 contains %0400, the byte at location %0400 contains 2, and the source
operand is the immediate value 3, the statement

, CPB @R5,#3
will leave the C flag set, indicating a borrow, the S flag set, and the Z and V flags
cleared.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

27

CPD
Compare and Decrement

CPD dst, src, r, cc dst: IR
CPDB . src: IR

Operation: dst - src
AUTODECREMENT src (by I if byte, by 2 if word)
r •*- r - 1
This instruction is<used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then decremented by one if CPDB, or by two if CPD, thus
moving the pointer to the previous element in the strings The word register specified
by "r" (used as a counter) is then decremented by one. '

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR: CPD Rd, ©Rs1, r, cc
CPDB Rbd, ©Rs1, r, cc

1011 10 1 |w Rs * 0 1000
0 0 0 0 r Rd * 0 cc

20
1 0 1 1 1 0 1 | w Rs * 0 1000
0 0 0 0 r Rd * 0 cc

20

Example: If register RHO contains %FF, register R1 contains %4001, the byte at location
%4001 contains %00, and register R3 contains 5, the instruction

CPDB RHO, @R1, R3, EQ
will leave the Z flag cleared since the condition code would not have been "equal."
Register R1 will contain the value %4000 and R3 will contain 4. For segmented
mode, R1 must be replaced bv a register pair.

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

28

CPDR
Compare Decrement and Repeat

CPDRdst, src, r, cc dst: IR
CPDRB src: IR

Operation: dst - src
AUTODECREMENT src (by 1 if byte; by 2 if word)
r r - 1
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then decremented by one if CPDRB, or by two if CPDR, thus
moving the pointer to the previous element in the string. The word register specified
"r" (used as a counter) is decremented by one. The entire operation is repeated until
either the.condition is met or the result of decrementing r is zero. This instruction
can search a string from 1 to 65536 bytes or 32768 words long (the value of r must
not be greater than 32768 for CPDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IR: CPDR Rd, (©Rs1, r, cc
CPDRB Rbd, @Rsl, r, cc

1 0 1 1 1 0 1 |w Rs * 0 1100
0 0 0 0 r Rd * 0 cc

11 +9n 1 0 1 1 1 0 1 |w Rs * 0 1 1 0 0

0 0 0 0 | r Rd * 0 cc

Example: If the string of words starting at location %2000 contains the values 0, 2, 4, 6 and 8,
register R2 contains %2008, R3 contains 3, and R8 contains 8, the instruction

CPDR R3, @R2, R8, GT
will leave the Z flag set indicating the condition was met. Register R2 will contain the
value %2002, R3 will still contain 5, and R8 will contain 5. For segmented mode, a
register pair would be used instead of R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements compared.

29

CPI
Compare and Increment

dst: IR
src: IR

CPI dst, src, r, cc
CPIB

Operation: dst - src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
r r - 1

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to (subtracted irom) the destination operand and the Z flag is set if the
condition code is specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then incremented by one if CPIB, or by two if CPI, thus
moving the pointer to the next element in the string. The source, destination, and
counter registers must be separate and non-overlapping registers. The Word register
specified by "r" (used as a counter) is then decremented by one.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR: CPI Rd, @Rsl, r, cc
CPIB Rbd, @Rsl, r, cc 1 0 1 1 1 0 1 |w R* * 0 0000

0000 | r Rd * 0 cc
20

1 0 1 1 1 0 1 |w Rs * 0 0000
ooooj r Rd * 0 cc

30

Example:

CPI
Compare and Increment

This instruction can be used in a "loop" of instructions that searches a string of data
for an element meeting the specified condition, but an intermediate operation on
each data element is required. The following sequence of instructions (to be
executed in non-segmented mode) "scans while numeric," that is, a string is
searched until either an ASCII character not in the range "0" to "9" (see Appendix
C) is found, or the end of the string is reached. This involves a range check on each
character (byte) in the string. For segmented mode, R1 must be changed to a
register pair.

LD R3, #STRLEN ! initialize counter!
LDA Rl, STRSTART !load start address!
LD RL0,f9' Largest numeric char!

LOOP:
CPB @Rl,fO' !test char < 'O'!
JR ULT,NONNUMERIC
CPIB RLO, @R1, R3, ULT !test char > 'O'!
JR Z, NONNUMERIC
JR NOV, LOOP [repeat until counter = 0!

DONE:

NONNUMERIC: [handle non-numeric char!

Note 1: W ord register in nonsegm ented m ode, register pair in segm en ted m ode.

31

CPIR
Compare, Increment and Repeat

CPIR dst, src, r, cc dst: R
CPIRB src: IR

Operation: dst - src
AUTOINCREMENT src (by 1 if byte; by 2 if word)
r -*-r - 1
repeat until cc is true or R = 0

This instruction is used to search a string of data for an element meeting the
specified condition. The contents of the location addressed by the source register are
compared to'(subtracted from) the destination operand, and the Z flag is set if the
condition code specified by "cc" would be set by the comparison; otherwise the Z
flag is cleared. See list of condition codes. Both operands are unaffected.
The source register is then incremented by one if CPIRB, or by two if CPIR, thus
moving the pointer to the next element in the string. The word register specified by
"r" (used as a counter) is then decremented by one. The entire operation is repeated
until either the condition is met or the result of decrementing r is zero. This instruc
tion can search a string from 1 to 65536 bytes or 32768 words long (the value of r
must not be greater than 32768 for CPIR). The source, destination, and counter
registers must be separate and non-overlapping registers.
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IR: CPIR Rd, @ R sl, r, cc
CPIRB Rbd(@ R s!(r, cc

1 0 1 1 1 0 1 | w Rs * 0 0100

0 0 0 0 | r Rd * 0 cc

1 0 1 1 1 0 1 | w R# * 0 0 1 0 0

0 0 0 0 1 Rd * 0 cc

32

Example:

CPIR
Compare, Increment and Repeat

The following sequence of instructions (to be executed in nonsegmented mode) can
be used to search a string for an ASCII return character. The pointer to the start of
the string is set, the string length is set, the character (byte) to be searched for is
set, and then the search is accomplished. Testing the Z flag determines whether the
character was found. For segmented mode, R1 must be changed to a register pair.

LDA Rl, STRSTART
LD R3, #STRLEN
LDB RLO, #% D !hex code for return is D!
CPIRB RLO, @R1, R3, EQ
IR Z, FOUND

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

Note 2: n = num ber of data elem ents com p ared .

33

CPSD
Compare String and Decrement

CPSD dst, src, r, cc dst: IR
CPSDB src: IR

Operation: dst - src
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r ««- r - 1

This instruction can be used to compare two strings of data until the specified condi
tion is true. The contents of the location addressed by the source register are com
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by "cc" would be set by the
comparison; otherwise the Z flag is’cleared. See list of condition codes. Both ope
rands are unaffected.
The source and destination registers are then decremented by one if CPSDB, or by
two if CPSD, thus moving the pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is then decremented by one.

Flags: C: Cleard if there is a carry from the most significant bit of the result of the com
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set is the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPSD fcR d h ^ R sl, r, cc
CPSDB (^Rc URs l ,r ,c c

1011101 |w Rs * 0 1010
0 0 0 0 | r Rd * 0 cc

25
101 1 1 01 |w Rs * 0 1010
0000 r Rd * 0 cc

Example: If register R2 contains ft/o2000, the byte at location %2000 contains %FF, register R3
contains %3000, the byte at location %3000 contains %00, and register R4 contains
1 , the instruction (executed in nonsegmented mode)

CPSDB @R2, @R3, R4, UGE
will leave the Z flag set to 1 since the condition code would have been "unsigned
greater than or equal", and the V flag will be set to 1 to indicate that the counter R4
now contains 0. R2 will contain %1FFF, and R3 will contain %2FFF. For segmented
mode, R2 and R3 must be changed to register pairs.

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

34

CPSDR
Compare String, Decrement and Repeat

CPSDR dst, src,r, cc dst: IR
CPSDRB src: IR

Operation: dst — src
AUTODECREMENT dst and src (by 1 if byte; by 2 if word)
r «*- r 1
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the compar
ison; otherwise the Z flag is cleared. See list of condition codes. Both operands
are unaffected.
The source and destination registers are then decremented by one if CPSDRB" or by
two if CPSDR, thus moving the pointers to the previous elements in the strings. The
word register specified by "r" (used as a counter) is then decremented by one. The
entire operation is repeated until either the condition is met or the result of decre
menting r is zero. This instruction can compare strings from 1 to 65536 bytes or from
1 to 32768 words long (the value of r must not be greater than 32768 for CPSDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven more cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

Flags: C: Cleared if there is a carry from the most significant bit of the result of the com
parison; set otherwise, indicating a "borrow". Thus this flag will be set if the
destination is less than the source when viewed as unsigned integers

Z: Set if the conditon code generated by the Comparison matches cc; cleared
otherwise

S: Set if the result of the comparison is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPSDR @Rdi ,@Rs! ,r ,c c
CPSD R B@ R di,@ R si,r,cc

1 0 1 1 1 0 1 | w Rs 1110
oooo] r Rd cc

1 0 1 1 1 0 1 | W Rs 1 1 1 0

0 0 0 0 | r Rd cc

35

CPSDR
Compare String, Decrement and Repeat

Example: If the words from location %1000 to %1006 contain the values 0, 2, 4, and 6, the
words from location %2000 to %2006 contain the values 0, 1, 1,0, register R13 con
tains % 1006, register R14 contains %2006, and register R0 contains 4, the instruc
tion (executed in nonsegmented mode)

CPSDR @R13, @R14, R0, EQ
leaves the Z flag set to 1 since the condition code would have been "egyal" (loca
tions % 1000 and %2000 both contain the value 0). The V flag will be set to 1 indi
cating r was decremented to 0. R13 will contain %0FFE, R14 will contain %1FFE,
and R0 will contain 0. For segmented mode, R13 and R14 must be changed to
register pairs.

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

Note 2: n = num ber of data elem ents co m p ared .

36

CPSI dst, src, r; cc
CPSIB

CPSI
Compare String and Increment

dst: IR
src: IR

Operation: dst - src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r r - 1

This instruction can be used to compare two strings of data until the specified condi
tion is true. The contents of the location addressed by the source register are com
pared to (subtracted from) the contents of the location addressed by the destination
register. The Z flag is set if the condition code specified by "cc" would be set by the
comparison; otherwise the Z flag is cleared. See list of condition codes. Both ope
rands are unaffected.
The source and destination registers are then incremented by one if CPSIB, or by
two if CPSI, thus moving the pointers to the next elements in the strings. The word
register specified by "r" (used as a counter) is then decremented by one.

Flags: C: Undefined
Z: Set if the condition code generated by the comparison matches cc; cleared

otherwise
S: Undefined
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: CPSI <u-Rdl ,@Rsl ,r ,c c
CPSIB & R di,@ R sl,r,cc

101 1 10 1 |w Rs * 0 0010

0 0 0 0 r Rd * 0 cc
25

1011101|w Rs * 0 001 0

ooooj r Rd * 0 cc

37

CPSI
Compare String and Increment

Example: This instruction can be used in a "loop'' of instructions which compares two strings
until the specified condition is true, but where an intermediate operation oh each
data element is required. The following Sequence of instructions, to be executed in
nonsegmented mode, attempts to match a given source string to the destination
string which is known to contain all upper-case characters. The match should suc
ceed even if the source string contains some lower-case characters. This involves a
forced conversion of the source string to upper-case (only ASCII alphabetic letters
are assumed, see Appendix C) by resetting bit 5 of each character (byte) to 0 before
comparison.

LDA
LDA

Rl, SRCSTART
R2, DSTSTART

!load start addresses!

LOOP:
LD R3, #STRLEN ! initialize counter!

RESB @R1,#5 !force upper-case!
CPSIB @R1,@R2, R3, NE Jcompare until not equal!
IR Z, NOTEQUAL (exit loop if match fails!
JR NOV, LOOP ! repeat until counter = 0!

DONE: Imatch succeeds!

NOTEQUAL: Imatch fails!

In segmented mode, R1 and R2 must both be register pairs.

Note 1: W ord register in nonsegm ented m ode, register p air in segm ented m ode.

38

CPSIR
Compare String, Increment and Repeat

CPSIR dst,src,r,cc dst: IR
CPSIRB src: IR

Operation: dst - src
AUTOINCREMENT dst and src (by 1 if byte, by 2 if word)
r «*- r - 1
repeat until cc is true or r = 0

This instruction is used to compare two strings of data until the specified condition is
true. The contents of the location addressed by the source register are compared to
(subtracted from) the contents of the location addressed by the destination register.
The Z flag is set if the condition code specified by "cc" would be set by the com
parison; otherwise the Z flag is cleared. See list of condition codes.
Both operands are unaffected. The source and destination registers are then
incremented by one if CPSIRB, or by two if CPSIR, thus moving the pointers to the
next elements in the strings. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the condition
is met or the result of decrementing r is zero. This instruction can compare strings
from 1 to 65536 bytes or from 1 to 32768 words long (the value of r must not be
greater than 32768 for CPSIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted. The source, destination, and counter registers must be separate and non
overlapping registers.

Flags: C: Cleared if there is a carry from the most significant bit of the result of the last
comparison made; set otherwise, indicating a "borrow". Thus this flag will be set
if the last destination element is less than the last source element when viewed as
unsigned integers.

Z: Set if the condition code generated by the comparison matches cc; cleared
otherwise

S: Set if the result of the last comparison made is negative; cleared otherwise
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: CPSIR (k'Rdl ^ R s 1 ,r ,c c
CPSIRB <&Rdi,#Rsl,r,cc

1011101 |w Rs * 0 0 1 1 0

0 0 0 0 r Rd * 0 cc
11 + 14n 101 1 101 |w Rs * 0 0 1 1 0

0 0 0 0 | r Rd * 0 cc

39

CPSIR
Compare String, Increment and Repeat

Example: The CPSIR instruction can be used to compare test strings for lexicographic order.
(For most common character encoding — for example, ASCII and EBCDIC — lexi
cographic order is the same as alphabetic order for alphabetic test strings that do
not contain blanks.)
Let SI and S2 be text strings of lengths LI and L2. According to lexicographic
ordering, SI is said to be "less than" or "before" S2 if either of the following is true:

■ At the-first character position at which SI and
S2 contain different characters, the character
code for the SI character is less than the
character code for the S2 character.

■ SI is shorter than S2 and is equal, character for
charaoter, to an initial substring of S2.

For example, using the ASCII character code, the following strings are ascending
lexicographic order:
A .
AU A
A B C
A BCD
A'B D
Let us assume that the address of SI is in RR2, the address of S2 is in RR4, the
lengths LI and L2 of SI and S2 are in RO and Rl, and the shorter of LI and L2 is in
R6. The the following sequence of instructions will determine whether SI is less than
S2 in lexicographic order:
CPSIRB @RR2, 9RR4, R6, NE IScan to first unequal character!

!The following flags settings are possible:
. Z = 0, V = 1: Strings are equal through LI

character.(Z = 0, V = 0 cannot occur).
Z = 1, V = 0 or 1: A character position was
found at which the strings are unequal.
C = 1 (S = 0 or 1): The character in the RR2
string was less (viewed as numbers from 0 to
255, not as numbers from -128 to -»-127).
C = 0 (S = 0 or 1): The character in the RR2
string was not less!

JR Z,CHAR__COMPARE !If Z = 1, compare the characters!
CP R0,R1 {Otherwise, compare string lengths!
JR'LT, S I__IS__LESS
JR SI NOT Less
CHAR__COMPARE:
JR ULT, S I__IS__LESS !ULT is another name for C = 1!
S I__NOT LESS:

S I__IS__LESS:

40

DAB
Decimal Adjust

. DAB dst dst: R

Operation: dst '«•- DA dst

The destination byte is adjusted to form two 4-bit BCD digits following an addition or
subtraction operation. For addition (ADDB, ADCB) or subtraction (SUBB(SBCB),
the following table indicates the operation performed:

Instruction

Carry
Before
DAB

Bits 4-7
Value
(Hex)

H Flag
Before
DAB

Bits 0-3
Value
(Hex)

Number
Added
To Byte

Carry
After
DAB

0 0-9 0 0-9 00 0
0 0-8 0 . A-F 06 0

ADDB 0 0-9 1 0-3 06 0
ADCB 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1

SUBB 0 0-9 0 0-9 00 0
SBCB 0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1
1 6-F 1 6-F 9A 1

The operation is undefined if the destination byte was not the result of a valid addi
tion or subtraction of BCD digits.

Flags: C: Set or cleared according to the table above
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: DAB Rbd 5 511 0 | 1 1 0 0 0 0 | Rd | 0 0 0 0 | 11 0 1 1 1 0 0 0 0 [Rd | 0 0 0 0 |

41

DAB
Decimal Adjust

Example: If addition is performed using the BCD values 15 and 27, the result should be 42.
The sum is incorrect, however, when the binary representations are added in the
destination location using standard binary arithmetic.

0001 0101
+ 0010 0111

0011 1100 = %3C
The DAB instruction adjusts this result so that the correct BCD representation is
obtained.

0011 1100
+ 0000 0110

0100 0010 = 42

42

DEC dst; src
DECB

dst: R, IR, DA, X
src: IM

DEC
Decrement

Operation: dst ■+- dst - src (where src = 1 to 16)

The source operand (a value from 1 to 16) is subtracted from the destination operand
and the result is stored in the destination. Subtraction is performed by adding the
two's complement of the source operand to the destination operand. The source
operand may be omitted from the assembly language statement and defaults to the
value 1 .
The value qf the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from 0 to
15, which corresponds to the source values 1 to 16.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs,

and the sign of the result is the same as the sign of the source; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: DEC Rd, in
DECB Rbd, in

|lo| l010ljw| Rd | n - 1 | 4 I|l 0 11 01 oi|w j Rd | n - 1 | 4

IR: DEC &Rdl, in
DECB &Rdi, in

10011 01011W| Rd*0 I n - 1 | 11 I 0 0 11 01 oi|w | Rd*0| n - 1 | 11

DA: DEC address, in
DECB address, in

01 |l 01 0 11W| 0000 | n - 1
13 SS

01 |l 01 oi|w 0 00 0 | n - 1
14

address 0 1 segment offset

0 1 11 01 oi|w 0000| n - 1

SL 1 segment 0000 0000 16
offset

X: DEC addr(Rd), in
DECB addr(Rd), in

01 |l 01 0 11W| Rd*0 | n - 1
14 SS

0 1 |l 0 1 0 11w Rd*0,| n - 1
14

address 01 segment offset

01 |l 01 oi|w Rd*0 | n - 1

SL 1 | segment 0000 0000 17
offset

Example: If register RIO contains %002A, the statement
DEC RIO

will leave the value %0029 in RIO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

43

J) J Privileged
Disable Interrupt

DI Int Int: VI, NVI

Operation: If instruction (0) = 0 then NVI 0 '
If instruction (1) = 0 then VI 0

Any combination of the Vectored Interrupt (VI) or Non-Vectored Interrupt (NVI)
control bits in the Flags and Control Word (FCW) are cleared to zero if the cor
responding bit in the instruction is zero, thus disabling the appropriate type of inter
rupt. If the corresponding bit in the instruction is one, the control bit will not be
affected. All other bits in the FCW are not affected. There may be one or two
operands in the assembly language statement, in either order.

Flags: No flags affected.

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

DI int 7 7| 0 1 1 1 1 1 0 0 | oooooo |K|y| | 0 1 1 1 1 1 0 0 |oooooo|Y|y|

Example: If the NVI and VI control bits are set (1) in the FCW, the instruction:
DI VI

will leave the NVI control bit in the FCW set (1) and will leave the VI control bit in
the FCW cleared (0).

44

DIV
Divide

Operation:

Flags:

DIV dst, src dst: R
DIVL src: R(IM, IR, DA, X

Word: (dst is register pair, src is word):
dst (0:31) is divided by src (0:15)
(dst (0:31) = quotient x src (0:15) + remainder)
dst (16:31) quotient
dst (0:15) *•- remainder

Long: (dst register quadruple, src is long word or register pair):
dst (0:63) is divided by src (0:31)
(dst (0:63) = quotient x src (0:31) + remainder)
dst (32:63) quotient
dst (0:31) «*- remainder

The destination operand (dividend) is divided by the source operand (divisor), the
quotient is stored in the low-order half of the destination and the remainder is stored
in the high-order half of the destination. The contents of the source are not affected.
Both operands are treated as signed, two's complement integers and division is per
formed so that the remainder is of the same sign as the dividend. For DIV, the
destination is a register pair and the source is a word value; for DIVL, the destina
tion is a register quadruple and the source is a long word value.
There a four possible outcomes of the Divide instruction, depending on the division,
and the resulting quotient:
CASE 1 . If the quotient is within the range -2 15 to 213 - 1 inclusive for DIV or
-231 to 231 - 1 inclusive for DIVL, then the quotient and remainder are left in the
destination register as defined above, the overflow and carry flags are cleared to
zero, and the sign and zero flags are set according to the value of the quotient.
CASE 2. If the divisor is zero, the destination register remains unchanged, the
overflow and zero flags are set to one and the carry and sign flags are cleared to
zero.
CASE 3. If the quotient is outside the range -2 16 to 2 16- 1 inclusive for DIV or -232
to 232 - 1 inclusive for DIVL, the destination register contains an undefined value,
the overflow flag is set to one, the carry and zero flags are cleared to zero, and the
sign flag is undefined.
CASE 4. If the quotient is inside the range of case 3 but outside the range of case
1 , then all but the sign bit of the quotient and all of the remainder are left in the
destination register, the overflow and carry flags are set to one, and the sign and
zero flags are set according to the value of the quotient. In this case, the sign flag
can be replicated by subsequent instruction into the high-order half of the destina
tion to produce the two's complement representation of the quotient in the same
precision as the original dividend.

C: Set if V is set and the quotient lies in the range from -2 16 to 216 - 1 inclusive for
DIV or in the range from -232 to 232- 1 inclusive for DIVL; cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise
S: Undefined if V is set and C is clear (overflow); otherwise set if the quotient is

negative, cleared if the quotient is non-negative.
V: Set if the divisor is zero or if the computed quotient lies outside the range from

-2 15 to 2 15- 1 inclusive for DIV or outside range from -231 to 231 -1 inclusive
for DIVL; cleared otherwise

D: Unaffected
H: Unaffected

45

DIV
Divide

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

R:

IM:

IR:

DA:

X:

DIV RRd, Rs

DIVL RQd, RRs

DIV RRd, #data

DIVL RQd, #data

DIV RRd, @RS1

DIVL RQd, @Rsi

DIV RRd, address

DIVL RQD, address

DIV RRd, addr(Rs)

DIVL RQd, addr(Rs)

1 0 0 1 1 0 1 1 Rs I Rd I
11 0 I 0 1 1 0 10 I Rs Rd

0 0 0 1 1 0 1 1 0 0 0 0 Rd

0 01 01 1 0 1 0 | 0 0 0 0 | Rd

31 data (high) 16

15 data (low) 0

00 0 1 1 0 1 1 Rs*0 Rd

0 0 0 1 1 01 0 Rs^tO Rd

0 1 0 1 1 0 1 1 0 0 0 0 Rd

0 1 0 1 1 0 1 0 0 0 0 0 Rd

0 1 1 0 1 1 0 11 | Rs*0 | Rd

address

0 1 1 0 1 1 0 1 0 | Rs*0 | Rd

address

11 p| 0 110 11 | Rs | Rd |

10 0 1 1 0 1 0 Rs Rd

0 0 0 1 1 0 1 1 0 0 0 0 Rd

0 0 1 01 1 01 0 | 0 0 0 0 | Rd

31 data (high) 16

15 data (low) 0

00 0 1 1 0 1 1 Rs*0 Rd

00 0 1 1 0 1 0 Rs*0 Rd

SS

SL

SS

SL

SS

SL

SS

SL

0 1 1 0 1 1 0 1 1 0 0 0 0 | Rd

0 1 segment offset

0 1] 0 1 1 0 1 1 0 0 0 0 | Rd

1 1 segment 0 0 0 0 0 0 0 0

offset

0 11 0 1 1 0 1 0 0 0 0 0 | Rd

0 1 segment offset

0 1 | 0 1 1 0 1 0 0 0 0 0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

0 11 0 1 1 0 1 1 Rs*0 | Rd

0 1 segment offset

0 1 1 0 1 1 0 1 1 Rs*0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

01 | 0 1 1 0 1 0 Rs*0 | Rd

0 1 segment offset

0 1 1 0 1 1 0 1 0 Rs*0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the table under Example.

46

Example:

DIV
Divide

The following table gives the DIV instruction execution times for word and long
word operands in all possible addressing modes.

arc Word Long Word

NS SS SL NS SS SL
R 107 — — 744 — —

IM 107 — — 744 — —

IR 107 107 107 744 744 744
DA 108 108 111 745 746 748

X 109 109 112 746 746 749

(Divisor is zero)

R 13 13 13 30 30 30
IM 13 13 13 30 30 30
IR 13 13 13 30 30 30

DA 14 15 17 31 32 34
X 15 15 18 32 32 35

(Absolute value of the high-order half of the dividend is larger than the
absolute value of the divisor)

R 25 25 25 51 51 51
IM 25 25 25 51 51 51
IR 25 25 25 51 51 51

DA 26 27 29 52 53 55
X 27 27 30 53 53 56

Note that for proper execution, the "dst field" in the instruction format encoding
must be even for DIV, and must be a multiple of 4 (0, 4, 8, 12) for DIVL. If the
source operand in DIVL is a register, the "src field" must be even.
If register RRO (composed of word register.R0 and Rl) contains %00000022 and
register R3 contains 6, the statement

DIV RR0,R3
will leave the value %00040005 in RRO (Rl contains the quotient 5 and R0 contains
the remainder 4).

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

Note 2: The execution time for the instruction will be lower than indicated for divide by zero and certain
overflow conditions.

47

DJNZ
Decrement and Jump if Not Zero

DJNZ R, dst
DBJNZ dst: RA

Operation: R ◄- R - 1
If R =£ 0 then PC •*- PC - (2 x displacement)

The register being used as a counter is decremented. If the contents of the register
are not zero after decrementing, the destination address is calculated and then
loaded into the program counter (PC). Control will then pass to the instruction
whose address is pointed to by the PC. When the register counter reaches zero, con
trol falls through to the instruction following DJNZ or DBJNZ. This instruction pro
vides a simple method of loop control.
The relative addressing mode is calculated by doubling the displacement in the
instruction, then subtracting this value from the updated value of the PC to derive
the destinatiop address. The updated PC value is taken to be the address of the
instruction byte following the DJNZ or DBJNZ instruction, while the displacement is a
7-bit positive value in the range 0 to 127. Thus, the destination address must be in

' the range -252 to 2 bytes from the start of the DJNZ or DBJNZ instruction. In the
segmented mode, the PC segment number is not affected. The assembler automatic
ally calculates the displacement by subtracting the PC value of the following instruc
tion from the address given by the programmer. Note that DJNZ or DBJNZ cannot be
used to transfer control in the forward direction, nor to another segment in
segmented mode operation.

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

RA: DJNZ R, displacement
DBJNZ Rb, displacement

11 111 1 1 1 1 1 r |w] disp | J 1 1 1 1 | r |w| disp |

Example: DJNZ and DBJNZ are typically used to control a "loop" of instructions. In this exam
ple for nonsegmented mode, 100 bytes are moved from one buffer area to another,
and the sign bit of each byte is cleared to zero. Register RHO is used as the counter.

LDB RHO,#100 linitalize counter!
LDA Rl, SRCBUF lload start address!
LDA R2, DSTBUF

LOOP:
LDB RL0,@R1 Hoad source byte!
RESB RL0,#7 !mask off sign bit!
LDB @R2, RLO . !store into destination!
INC Rl Jadvance pointers!
INC R2
DBJNZ RHO, LOOP {repeat until counter =

NEXT:
>r segmented mode, R1 and R2 must be changed for register pairs.

48

Privileged EI
Enable Interrupts

EI int Int: VI, NVI

Operation: If instruction (0) = 0 then NVI 1
If instruction (1) = 0 then VI • * - 1

Any combination of the Vectored Interrupt (VI) or Non-Vetored Interrupt (NVI) con
trol bits in,the Flags and Control Word (FCW) are set to one if the corresponding bit
in the instruction is zero, thus enabling the appropriate type of interrupt. If the cor
responding bit in the instruction is one, the control bit will not be affected. All other
bits in the FCW are not affected. There may be one or two operands in the assembly
language statement, in either order.

Flags: No flags affected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

EI int 7 7| 0 1 1 1 1 1 0 0 | 000001 |r|y| I 01111100 | 00000 1 |y|v|

Example: If the NVI contol bit is set (1) in the FCW, and the VI control bit is clear (0), the
instruction

EI VI
will leave both the NVI and VI control bits in the FCW set (1)

49

EX
Exchange

EX dst, src dst: R
EXB src: R(IR, DA, X

Operation: tmp ◄- src (tmp is a temporary internal register)
src ◄- dst
dst tmp

The contents of the source operand are exchanged with the contents of the destina
tion operand.

Flags: No flags affected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format

R: EX Rd, Rs
EXB Rbd, Rbs

IR: EX Rd, @Rsi
EXB Rbd, @Rsi

DA: EX Rd, address
EXB Rbd, address

X: EX Rd, addr(Rs)
EXB Rbd, addr(Rs)

|lo|lQ11o|w| Rs | Rd |

I 0 0 11 0 1 1 01W | Rs*0 | Rd |

0 1 11 0 1 1 o|w| 0 0 0 0 | Rd

address

0 1 11 0 1 1 0 1W | Rs*0 | Rd

address

6

12

15

16

10 1 0 1 1 0 W Rs Rd

[o 0[1 0 1 1 0 1W | Rs*0 | Rd

Cycles

6

12

16

18

16

19

Example: If register R0 contains 8 and register R5 contains 9, the statement
EX R0,R5

will leave the values 9 in R0, and 8 in R5. The flags will be left unchanged.

Note l: Word register in nonsegmented mode, register pair in segmented mode.

50

EXTS
Extend Sign

EXTSB dst dst: R
EXTS
EXTSL

Operation: Byte
if dst (7) = 0 then dst (8:15) 000...000

else dst (8:15) 111_111
Word
if dst (15) == 0 then dst (16:31) «- 000. ..000

else dst (16:31) 1 1 1 .. .111
Long
if dst (31) ?= 0 then dst (32:63) 000. ..000

else dst (32:63) * * - 1 1 1 .. .111

The sign bit of the low-order half of the destination operand is copied into all bit
positions of the high-order half of the destination. For EXTS, the destination is a
register pair; for EXTSL, the destination is a register quadruple.
This instruction is useful in multiple precision arithmetic or for conversion of small
signed operands to larger signed operands (as,.for example, before a divide).

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: EXTSB Rd |l 0 1 1 0001 | Rd | 0000 | 11 |lo| 1 10 0 01 | Rd | 0000 | 11

EXTS RRD |l 0 1 1 0001 | Rd |1010 | 11 11 01 1 1 0 0 01 | Rd |1010 | 11

EXTSL RQd |l 0 1 1 0001 | Rd I 01 1 1 I 11 |l o| 1 1 0001 | Rd | 0 1 1 1 | 11

Example: If register pair RR2 (composed of word registers R2 and R3) contains % 12345678,
the statement .

EXTS. RR2
will leave the value %00005678 in RR2 (because the sign bit of R3 was 0).

51

HALT
Halt

Privileged

Operation: The CPU operation is suspended until an interrupt or reset request is received. This
instruction is used to synchronize the Z8000 with external events, preserving its state
until an interrupt or reset request is honored. After an interrupt is serviced, the
instruction following HALT is executed. While halted, memory refresh cycles will
still occur, and BUSREQ will be honored.

Flags: No flags affected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles1 Instruction Format Cycles1

HALT 8 + 3n 8 + 3n| 01111010 | oooooooo | | 0 1 1 1 1 0 1 0 | oooooooo |

Note 1: Interrupts a re recogn ized at the end of e a c h '3 -c y c le p eriod ; thus n = num ber of periods without
interruption.

52

Privileged IN (SIN)
(Special) Input

Operation

Flags:

IN dst, src
INB
SIN dst, src
SINB

dst src

dst: R
src: IR, DA
dst: R
src: DA

The contents of the source operand, an Input or Special Input port, are loaded into
the destination register. IN and INB are used for normal I/O operation; SIN and
SINB are used for Special I/O operation.

No flags affected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR: IN Rdi, @Rs
INB Rbdh @Rs

DA: IN Rd, port
INB Rbd, port

SIN Rd, port
SINB Rbd, port

l ° ° 1 1 1 10 w Rs I Rd I

00 11 1 1 0 1 I w | Rd 01 OS

port

l°° 11110 w Rs I Rd I

00 11 1 1 0 1M Rd I 0 1 0 s
port

Example: If register R6 contains the I/O port address %0123 and the port %0123 contains
%FF, the statement

INB RH2, @R6
will leave the value %FF in register RH2.

Note 1. Word register in nonsegmented mode; register pair in segmented mode.

53

INC
Increment

dst: R, IR, DA, X
src: IM

INC dst, src
INCB

Operation: dst «*- dst + src (src = 1 to 16)

The source operand (a value from 1 to 16) is added to the destination operand and
the sum is stored in the destination. Two's complement addition is performed. The
source operand may be omitted from the assembly language statement and defaults
to the value 1 .
The value of the source field in the instruction is one less than the actual value of the
source operand. Thus, the coding in the instruction for the source ranges from
0 to 15, which corresponds to the source values 1 to 16.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands were of the same sign

and the result is of the opposite sign; cleared otherwise
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IR:

INC Rd, in
INCB Rbd, in

INC @Rdi, in
INCB @Rdl, in

1 0 1 01 00 W Rd n - 1 I

00 1 01 00 W Rd *0 I n - 1

4

11

|l 0 11 0 1 0 0 1WI Rd I n - 1 I 4

00 1 01 00 W Rd*0 I n - 1 I 11

DA:

X:

INC address, #n
INCB address, in

INC addr(Rd), #n
INCB addr(Rd), in

01 1 0 1 0 0 W 0 0 0 0 n - 1

01 1 0 1 0 0 W Rd *0 n - 1

14

16

14

17

Example: If register RH2 contains %21, the statement
INCB RH2,#6

will leave the value %27 in RH2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

54

Privileged IND (SIND)
(Special) Input and Decrement

IND dst, src, r dst: IR
INDB src: IR
SIND
SINDB

Operation: dst ■+ - src
AUTODECREMENT dst (by I byte, by 2 if word)
r ■+ - r - 1 ’

This instruction is used for block input of strings of data. IND and INDB are used for
normal I/O operation; SIND and SINDB are used for special I/O operation. The con
tents of tHe I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then decremented by one if a byte instruction or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: IND @Rdi, <̂ Rs, r
INDB @Rd>, (S'Rs, r
SIND fe'Rdi, <&Rs, r
SINDB £*Rdl, <&Rs,

0 0 1 1 1 0 1 | w Rs * 0 ooos
0 0 0 0 | r Rd * 0 1 0 0 0

0 0 1 1 1 0 1 | w Ra * 0 OOOS

0 0 0 0 | r Rd * 0 1 0 0 0

Example: In segmented mode, if register RR4 contains %02004000 (segment 2, offset %4000),
register R6 contains the I/O port address %0228, the port %0228 contains %05B9,
and register R0 contains %0016, the instruction

IND @RR4, @R6, R0
will leave the value %05B9 in location %02004000, the value %02003FFE in RR4,
and the value %0015 in R0. The V flag will be cleared. Register R6 still contains the
value %0228. In nonsegmented mode, a word register would be used instead of
RR4.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

55

INDR (SINDR) Privileged
(Special) Input, Decrement and Repeat

INDR dst, src, r dst: IR
INDRB src: IR
SINDR
SINDRB

Operation: dst src
AUTODECREMENT dst (by 1 if byte, by 2 if word)
r r - 1
repeat until r = 0

This instruction is used for block input of strings of data. INDR and INDRB are used
for normal I/O operation; SINDR and SINDRB are used for special I/O operation.
The contents of the I/O port addressed by the source word register are loaded into
the memory location addressed by the destination register. I/O port addresses are 16

. bits. The destination register is then decremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the previous element of the
string in memory. The word register specified by "r" (used as a counter) is then
decremented by one. The address of the I/O port in the source register is
unchanged. The entire operation is repeated until the result of decrementing r is
zero. This instruction can input from 1 to 65536 bytes or 32768 words (the value for r
must not be greater than 32768 for INDR or SINDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt

. request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: INDR ©Rd1, @Rs, r
INDRB @Rdi, @Rs, r
SINDR ©Rd1, @Rs, r
SINDRB ©Rd1, @Rs,

0 0 1 1 1 0 1 | w Rs * 0 1 O O S

0 0 0 0 | r Rd * 0 0 0 0 0

0 0 1 1 1 0 1 |wRs * 0 1 OOS

0 0 0 0 r Rd * 0 0000

56

Privileged INDR (SINDR)
(Special) Input, Decrement and Repeat

Example: If register R1 contains %202A, register R2 contains the Special I/O address %0AFC,
and register R3 contains 8, the instruction

SINDRB @R1, @R2, R3
will input 8 bytes from the special I/O port OAFC and leave them in descending
order from %202A to %2023. Register R1 will contain %2022, and R3 will contain 0.
R2 wil) not be affected. The V flag will be set. This example assumes nonsegmented
mode; in segmented mode, R 1 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

57

INI (SINI) Privileged
(Special) Input and Increment

INI dst, src, r dst: IR
INIB src: IR
SINI
SINIB

Operation: dst «*- src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r r - 1

This instruction is used for block input of strings of data. INI, INIB are used for nor
mal I/O operation; SINI, SINIB are used for special I/O operation. The contents of
the I/O port addressed by the source word register'are loaded into the memory loca
tion addressed by the destination register. I/O port addresses are 16 bits. The
destination register is then incremented by one if a byte instruction, or by two if a
word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r" (used as a counter) is then decremented
by one. The address of the I/O port in the source register is unchanged.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: INI @Rdi, @Rs, r
INIB @Rdl, @Rs, r
SINI @Rdl, @Rs, r
SINIB @Rdl, @Rs, r

0 0 1 1 1.01 |w Rs * 0 1 OOS

0000 r Rd * 0 1 000

0011101|w Rs * 0 1 OOS

0000| r Rd * 0 1000

Example: In nonsegmented mode, if register R4 contains %4000, register R6 contains the I/O
port address %0229, the port %0229 contains %B9, and register RO contains %0016,
the instruction

INIB @R4, @R6, RO
will leave the value °/oB9 in location %4000, the value %4001 in R4, and the value
%0015 in RO. Register R6 still contains the value %0229. The V flag is cleared. In
segmented mode, R4 would be replaced by a register pair.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

58

Privileged IN IR (SINIR)
(Special) Input, Increment and Repeat

INIR dst, src, r dst: IR
INIRB src: IR
SINIR
SINIRB

Operation: dst src
AUTOINCREMENT dst (by 1 if byte, by 2 if word)
r «*- r - 1
repeat until r = 0,

This instruction is used for block input of strings of data. INIR and INIRB are used
for normal I/O operation; SINIR and SINIRB are used for special I/O operation. The
contents of the I/O port addressed by the source word register are loaded into the
memory location addressed by the destination register. I/O port addresses are 16
bits. The destination register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element in the string.
The word register specified by "r" (used as a counter) is then decremented by one.
The address of the I/O port in the source register is unchanged. The entire operation
is repeated until the result of decrementing r is zero. This instruction can input from
1 to 65536 bytes or 32768 words (the value for r must not be greater than 32768 for
INIR or SINIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted.

Flags: C: Unaffected
Z: Unaffected
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: INIR @Rdl, @Rs, r
INIRB @Rdl, @Rs, r
SINIR @Rdl, @Rs, r
SINIRB @Rdi, @Rs, r

0 0 1 1 1 0 1 | w Rs * 0 o o o s

0 0 0 0 | r Rd * 0 0 0 0 0

0 0 1 1 1 0 1 | w R* * 0 OOOS

0000| r Rd * 0 0000

59

INIR (SINIR) Privileged
(Special) Input, Increment and Repeat

Example: In nonsegmented mode, if register R1 contains %2023, register R2 contains the I/O
port address %0551, and register R3 contains 8, the statement

INIRB @R1, @R2, R3
will input 8 bytes from port %0051 and leave them in ascending order from %2023
to %202A. Register R1 will contain %202B, and R3 will contain 0. R2 will not be
affected. The V flag will be set. In segmented mode, a register pair must be used
instead of Rl.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred.

60

Privileged IRET
Interrupt Return

IRET

Operation: Nonsegmented Segmented
SP SP + 2 (Pop "identifier") SP SP + 2 (Pop "identifier")
PS @SP PS @SP
SP — SP + 4 SP SP + 6

This instruction is used to return to a previously executed procedure at the end of a
- procedure entered by an interrupt or trap (including a System Call instruction).

First, the "identifier" word associated with the interrupt or trap is popped from the
system processor stack and discarded. Then contents of the location addressed by
the system processor stack pointer are popped into the program status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW is not effective until the next instruction, so that the status pins will not
be affected by the new control bits until after the IRET instruction execution is com
pleted. The next instruction executed is that addressed by the new contents of the
PC. The system stack pointer (R15 if nonsegmented, or RR14 if segmented) is used to
access memory. When using a Z8001, the operation of IRET in nonsegmented mode
is undefined. A Z8001 must be in segmented mode when an IRET instruction is
performed.

Flags: C: Loaded from processor stack
Z: Loaded from processor stack
S: Loaded from processor stack
P/V: Loaded from processor stack
D: Loaded from processor stack
H: Loaded from processor stack

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

IRET 13 16I 01111011 | 00000000 | | 01111011 | oooooooo |

Example: In the nonsegmented Z8002 version, if the program counter contains %2550, the
system stack pointer (R15) contains %3000, and locations %3000, %3002 and %3004
contain %7F03, a saved FCW value, and %1004, respectively, the instruction

IRET
will leave the value %3006 in the system stack pointer and the program counter will
contain %1004, the address of the next instruction to be executed. The program
status will be determined by the saved FCW value.

61

JP
Jump

JP cc, dst dst: IR, DA, X

Operation: If cc is satisfied, then PC dst

A conditional jump transfers program control to the destination address if the
condition specified by "cc" is satisfied by the flags in the FCW. See list of condi
tion codes. If the condition is satisfied, the program counter (PC) is loaded with
the designated address; otherwise, the instruction following the JP instruction is
executed.

Flags: No flags affected

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format

IR: JP cc, @RcU

DA: JP cc, address

X: JP cc, addr(Rd)

10 01 011110 | Rd*0 | cc |

01 | 011110 | 0 000| cc

address

011 0111 1 0 | Rd*0| cc

address

10/7

7/7

8/8

10 0 1 0 1 1 1 1 0 | Rd*0 I cc |

Cycles2

15/7

8/8

10/10

11/11

11/11

Example: If the carry flag is set, the statement
JP C, %1520

replaces the contents of the program counter with %1520, thus transferring control
to that location.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: The two values correspond to jump taken and jump not taken.

62

JR
Jump Relative

JR cc, dst dst: RA

Operation: if cc is satisfied then PC PC + (2 x displacement)

A conditional jump transfers program control to the destination address if the condi
tion.specified by "cc" is satisfied by the flags in the FCW. See list of condition codes.
If the condition is satisfied, the program counter (PC) is loaded
with the designated address; otherwise, the instruction following the JR instruction is
executed. The destination address is calculated by doubling the displacement in the
instruction, then adding this value to the updated value of the PC to derive the
destination address. The updated PC value is taken to be the address of the instruc-

. tion byte following the JR instruction, while the displacement is an 8-bit signed value
in the range -128 to + 127. Thus, the destination address must be in the range -254
to +256 bytes from the start of the JR instruction. In the segmented mode, the PC
segment number is not affected.
The assembler automatically calculates the displacement by subtracting the PC value

. of the following instruction from the address given by the programmer.

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R A : JR cc, address
6 611 1 1 0 | cc | displacement | | 1 1 1 0 | cc | displacement |

Example: If the result of the last arithmetic operation executed is negative, the following four
instructions (which occupy a total of twelve bytes) are to be skipped. This can be
accomplished with the instruction

JR MI, $ +14
If the S flag is not set, execution continues with the instruction following the JR.
A byte-saving form of a jump to the label LAB is

JR LAB
where LAB must be within the allowed range. The condition code is "blank" in this
case, and indicates that the jumpjs always taken.

63

LD
Load

LD dst, src
LDB
LDL

dst: R
src: R, IR, DA, X, BA, BX

dst: IR, DA, X, BA, BX
src: R
or
dst: R, IR, DA, X
src: IM

Operation: dst src

Flags:

The contents of the source are loaded into the destination. The contents of the source
are not affected.
There are three versions of the Load instruction: Load into a register, load into
memory and load an immediate value.

No flags affected

Load Register
Source

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

1
1 0 11 0 0 0 0 |w | Rs | Rd | 3

11 o| 0 1 0 1 0 0 | RRs | RRd | 5

1
oo|i oooo w Rs*0 | Rd | 7

1
00 0 1 0 1 0 0 Rs*0 | RRd | 11

SS
o111 oooo|w 0 0 0 0 | Rd 10
0 1 segment offset

o 1 11 oooo|W 0 0 0 0 | Rd

SL 11 segment 0 0 0 0 0 0 0 0 12
offset

SS
0 11 0 1 0 1 0 0 0 00 0 I RRd 13
0 1 segment offset

0l | 0 1 0 1 0 0 0 00 0 | RRd

SL 1 segment 0 0 0 0 0 0 0 0 15
offset

R:

IR:

DA:

LD Rd, Rs
LDB Rbd, Rbs

LDL RRd, RRs

LD Rd, @Rsl
LDB Rbd, @Rsi
LDL RRd, @Rsi

LD Rd, address
LDB Rbd, address

1 0 1 0 0 0 0 W Rs

10010100

0010000 w

00 010100

0 1 1 0 0 0 0 W 0 0 0 0

3

5

7

11

' LDL RRd, address
01 0 1 0 1 0 0 0 0 0 0 RRd

12

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

64

LD
Load

Load Register (C o n tin u ed)

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X:

BA:

BX:

LD Rd, addr(Rs)
LDB Rbd, addr(Rs)

LDL RRd, addr(Rs)

LD Rd, Rsl(#disp)
LDB Rbd, RsK#disp)

LDL RRd, Rs'(#disp)

LD Rd, Rsl(Rx)
LDB Rd, Rsi(Rx)

LDL RRd, Rsi(Rx)

0l| l0000|w| R s * o | Rd

address

01 0 1 0 1 0 0 Rs*0 RRd

0 0 1 1 0 1 0 1 Rs*0 Rd

displacement

0 o| 1 1 0 0 0 w| Rs*0 | Rd

displacement

0 l| 1 1 0 0 0 W Rs*0 | Rd

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

0 1 [1 1 0 1 0 [1 Rs*0 | Rd

0 0 00 | Rx 0 0 0 0 0 0 0 0

10

13

14

17

14

17

SS

SL

SS

SL

0 1 1 1 o o o o w Rs*0 | Rd

0 segment offset

0 1 11 o o o o w R s *0 | Rd

1 I segment 0 0 0 0 0 0 0 0

offset

0 1 | 0 10 100 Rs*0 | RRd

0 segment offset

0 11 0 10 100 Rs*0 | RRd

1 segment 0 0 0 0 0 0 0 0

offset

0 o| 1 1 0 0 0 | W | Rs * 0 Rd

displacement

Oo| 1 1 0 1 0 1 | R s *0 Rd

displacement

0 111 1 0 0 Q |.w Rs *0 | Rd

00 00 | Rx 0 0 0 0 0 0 0 0

0 1 11 1 0 1 o| 1 Rs *0 | Rd

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

13

13

16

14

17

14

17

Load Memory
Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

IR: LD @RdL Rs
LDB @Rdi, Rbs
LDL@Rd1, RRs

8

11

8

11

10 0 11 01 1 11W|Rd * o| Rs | |o 0 11 0 1 1 l|w|Rd * o| Rs |

10 0 | 0 1 1 1 0 1 Rd * 0 RRs | | 0 0 | 0 1 1 1 0 l R d * 0 RRs |

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

65

LD
Load

Load Memory (C on tin u ed)

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

DA:

DA:

BA:

BX:

LD address, Rs
LDB address, Rbs.

LDL address, RRs

LD addr(Rd), Rs
LDB addr(Rd), Rbs

LDR addr(Rd), RRs

LD Rdi(#disp), Rs
LDB Rdi(#disp), Rbs

LDL Rdi(#disp), RRs

LD Rdi(Rx), Rs
LDB Rdi(Rx), Rbs

LDL Rdi(Rx), RRs

0 1 [1 0 1 1 11W | 0 0 0 0 | Rs

address

0 1 0 1 1 1 0 1 0 0 0 0 RRs

0 1110 1 1 1 |W| R d *0 | Rs

address

01 0 1 1 1 0 1 Rd*0 RRs

0 o| 1 1 0 0 1 1W| Rd *0 | Rs

displacement

0 0 1 1 0 1 1 1 Rd*0 RRs

displacement

0 111 1 ooi|w Rd*0 | Rs

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

0 11 1 1 0 1 1 1 Rd*0 | RRs

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

1 4

12

1 5

SS

SL

SS

SL

SS

SL

SS

SL

1 4

1 7

1 4

1 7

0 1 11 0 1 1 1 |w 00 00 | Rs

0 segment offset

0 111 0 1 1 11 w 0 0 0 0 | Rs

1 segment 0 0 0 0 0 00 0

offset

011 011101 0 0 0 0 RRs

0 1 segment offset

0 11 011101 00 00 | RRs

1 1 segment 0 0 0 0 0 0 0 0

offset

0 1 11 01 1 1 |w Rd*0 | Rs

0 segment offset

0 111 01 1 i|w Rd*o | Rs

1 | segment 0 0 0 0 0 0 0 0

offset

0 11 0 1 1 1 0 1 Rd*0 | RRs

0 1 segment offset

0 1 (0 1 1 1 0 1 Rd*0 | RRs

1 segment 0 0 0 0 0 0 0 0

offset

00 1 1 00 1 1W) Rd*0 | Rs

displacement

0 0 1 1 1 0 1 1 1 Rd*0 | RRs

displacement

0l|l 1 0 0 l|w Rd>0 | Rs

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

0 1] 1 1 0 1 1 1 Rd*0 I RRs

0 0 0 0 | Rx 0 0 0 0 00 00

12

1 4

17

12

1 5

1 5

1 8

1 4

1 7

1 7

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

66

LD
Load

Load Immediate Value
Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R :

IR :

D A :

LD Rd, #data

LDB Rbd, #data2

LDL RRd, #data

LD @Rdl, #data

LDB@Rdl, #data

LD address, #data

LDB address, #data

o o | 1 0 0 0 0 1 |oooo| Rd

data

oo| 1 0 0 0 0 0 0 0 0 0 | Rd

data data

1 1 0 0 Rd data

00 0 1 0 1 0 0 0 0 0 0 RRd

31 data (high) 16

i s data (low)

00 001 1 01 Rd * 0 0 1 0 1

0 0 1001 1 00 Rd * o| 01 01
data data

01 0 0 1 1 0 1 0 0 0 0 0 1 0 1

0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1

0 0 1 0 0 0 0 1 0 0 0 0 Rd

11

11

11

1 4

1 4

SS

SL

SS

SL

ool 1 0 0 0 0 0 0 0 0 0 | Rd

data data

| 1 1 0 0 | Rd | data |

0 0 1 0 1 0 1 0 0 I 0 0 0 0 | RRd

31 data (high) ig

15 data (low) o

00 0 0 1 1 0 1 | Rd * o| 01 01

data

00 0 0 1 1 0 0 Rd * 0 0 1 0 1

data data

° 1 |
0 0 1 1 0 1 0 0 0 0 | 0 1 0 1

0 segment offset

data

01 0 0 1 1 0 1 o o o o | 0 1 0 1

1 segment 0 0 0 0 0 0 0 0

offset

data

0 11 00 1 1 0 0 0 0 0 0 | 0 1 0 1

0 1 segment offset

data data

0 11 0 0 1 1 0 0 0 0 0 0 | 0 1 0 1

1 J segment 0 0 0 0 0 0 0 0

offset

data data

11

11

11

1 5

1 7

1 5

1 7

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.

Note 2: A lthough two formats exist for "LD B R, IM ", the assem bler always uses the short form at. In this ca se , the
"s rc field" in the instruction format encod in g contains the so u rce operan d .

67

LD
Load

Load Immediate Value (C on tin u ed)

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X: LD addr(Rd), #data

LDB addr(Rd), #data

01 0 0 1 1 0 1 Rd*0 0 1 0 1

0 1 | 0 0 110 0 Rd * 0 | 0 1 0 1

address

data data

15

15

SS

SL

SS

SL

0 11 0 0 1 1 0 1 Rd*0 | 0 1 0 1

0 1 segment offset

data

0 l | 001 101 Rd*0 | 0 1 0 1

1 | segment 0 0 0 0 0 0 0 0

offset

data

0 11 0 0 1 1 00 Rd*0 | 0 1 0 1

0 1 segment offset

data data

0 1 1 0 0 1 1 00 Rd*0 | 0 1 0 1

1 segment 0 0 0 0 0 0 0 0

offset

data | data

15

18

15

18

Example: Several examples of the use of the Load instruction are treated in detail in Chapter 4
under addressing modes.

68

LDA
Load Address

LDA dst, src dst: R
src: DA, X, BA, BX

Operation:

Flags:

dst address (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address computation follows the rules for
address arithmetic. The destination is a word register in nonsegmented mode, and a
register pair in segmented mode.
In segmented mode, the address loaded into the destination has an undefined value
in all reserved bits (bits 16-23 and bit 31). However, this address may be used by
subsequent instructions in the indirect based or base-index addressing modes
without any modification to the reserved bits.

No flags affected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

DA: LDA Rdl, address
O l j 1 1 0 1 1 0 | 0 0 0 0 | Rd

address

X: LDA Rdl, addr(Rs)
0 1 | 1 1 0 1 1 0 | Rs*0 | Rd

address

BA:

BX:

LDA Rdl, Rsl (#disp)

LDA Rdl-, Rsl (Rx)

00 1 1 0 1 00 | Rs*0 | Rd

displacement

0 1 1 1 0 1 0 0 Rs*0 | Rd
0 0 0 0 | Rx 0 0 0 0 0 0 0 0

12

13

15

15

0 1 | 1 10 110 0 0 00 | RRd

0 1 segment offset

0 1 | 1 1 0 1 1 0 0 0 0 0 | RRd

1 | segment 0 0 0 0 0 0 0 0

offset

01 | 1 1 0 1 1 0 Rs*0 | RRd

0 1 segment offset

0 1 1 1 1 0 1 1 0 Rs*0 | RRd

1 segment 0 0 0 0 0 0 0 0

offset

0 0 1 1 0 1 0 0 | R s ^ 0 | Rd

displacement

0 1 1 1 0 1 0 0 Rs * 0 | Rd

0 0 0 0 | Rx 0 0 0 0 0 0 0 0

13

15

13

16

15

15

69

LDA
Load Address

Examples: LDA R4, STRUCT !in nonsegmented mode, register R4 is loaded!
!with the nonsegmented address of the location!
!named STRUCT!

LDA RR2, « 3 » 8(R4) ! in segmented mode, if index register R4!
!contains %20, then register RR2 isdoaded!
!with the segmented address (« 3 » , offset %28)!

LDA RR2,RR4(#8) !in segmented mode, if base register RR4!
{contains %01000020, then register RR2 is loaded!
!with the segment address « 1 » %28!
!(segment 1 , offset %28)!

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented mode.

70

LDAR
Load Address Relative

LDAR dst, src dst: R
src: RA

Operation: dst - - ADDRESS (src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The destination is a word register in
nonsegmented mode, and a register pair in segmented mode. In segmented mode,
the address loaded into the destination has all "reserved" bits (bits 16-23 and bit 31)
cleared to zero.
The relative addressing mode is calculated by adding the displacement in the
instruction to the updated value of the program counter (PC) to derive the address.
The updated' PC value is taken to be the address of the instruction byte following the
LDAR instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767. The addition is performed following the rules of address
arithmetic, with no modifications to the segment number in segmented mode. Thus
in segmented mode, the source operand must be in the same segment as the LDAR
instruction.
The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.

Flags: No flags affected

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

RA: LDAR Rdl, address 0 0 1 1 0 1 0 0 0 0 0 0

displacement
15

0 0 1 1 0 1 0 0 0 0 0 0 Rd

displacement
15

Example: LDAR R2, TABLE !in nonsegmented mode, register R2 is loaded!
!with the address of TABLE!

LDAR RR4, TABLE Sin segmented mode, register pair RR4 is!
!loaded with the segmented address of TABLE,!
! which must be in the same segment as the program!

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

71

LDCTL Privileged
Load Control

LDCTL dst, src

Operation: dst src

dst: CTLR
src: R
or
dst: R
src: CTLR

This instruction loads the contents of a general purpose register into a control
register, or loads the contents of a control register into a general-purpose register.
The control register may be one of the following CPU registers:

FCW Flag and Control Word
REFRESH Refresh Control
PSAPSEG Program Status Area Pointer - segment number
PSAPOFF Program Status Area Pointer - offset
NSPSEG Normal Stack Pointer - segment number
NSPOFF Normal Stack Pointer - offset

The operation of each of the variants of the instruction is detailed below. The ones
which load data into a control register are described first, followed by the variants
which load data from a control register into a general purpose register. Whenever
bits are marked reserved, the corresponding bit in the source register must be either
0 or the value returned by a previous load from the same control register. For com
patibility with future CPUs, programs should not assume that memory copies of con
trol registers contain Os, nor should they store data in reserved fields of memory
copies of control registers.

Load Into Control Register
LDCTL FCW, Rs

Operation: FCW (2:7) «•- Rs (2:7)
FCW (11:15) — Rs (11:15)

FCW

LDCTL REFRESH, Rs

Operation: REFRESH (1:15) Rs (1:15)
Rs:
REFRESH:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'h 'h 'u 'u 'h 'h Y h ' '
j re | rate | counter |j|||**~ reserved

72

Privileged LDCTL
Load Control

Operation:

Operation:

Operation:

LDCTL NSPSEG, Rs '

NSPSEG (0:15) Rs (0:15) .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: I ...I

itTitTtiTnmtt
NSPSEG: I ...~ ~ l

In segmented mode, the NSPSEG register is the normal mode R14 and contains the
segment number of the normal mode processor stack pointer which is otherwise
inaccessible for system mode.
In nonsegmented mode, R14 is not used as part of the normal processor stack
pointer. This instruction may not be used in nonsegmented mode.

LDCTL NSPOFF, Rs '
NSP, Rs

NSPOFF (0:15) Rs (0:15)

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

"TnrnRrrmrn1
*NSPOFF: I• I

*NSP in nonsegmented mode

In segmented mode, the NSPOFF register is R15 in normal mode and contains the
offset part of the normal processor stack pointer. In nonsegmented mode, R15 is the
entire normal processor stack pointer.
In nonsegmented Z8002, the mnemonic "NSP" should be used in the assembly
language statement, and indicates the same control register as the mnemonic
"NSPOFF"

LDCTL PSAPSEG, Rs

PSAPSEG (8:14) Rs (8:14)

n 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rs: | , ,

PSAPSEG: [| segment numbJ7

-̂------------------- reserved

The PSAPSEG register may not be used in the nonsegmented Z8002. In the
segmented Z8001, care must be exercised when changing the two PSAP register
values so that an interrupt occurring between the changing of PSAPSEG and
PSAPOFF is handled correctly. This is typically accomplished by first disabling
interrupts before changing PSAPSEG and PSAPOFF.

73

LDCTL
Load Control

Privileged

Operation:

Operation:

Operation:

LDCTL PSAPOFF, Rs
PSAP, Rs

PSAPOFF (8:15) — Rs (8:15)

15 14 13 12 11 10 9 8

Rs: r ~ r , ~

m u m
*PSAPOFF: f" offset (upper byte)

7 6 5 4 3 2 1 0

*PSAP in nonsegmented mode

In the nonsegmented Z8002, the mnemonic "PSAP" should be used in the assembly
language statement and indicates the same control register as the mnemonic
"PSAPOFF". In the segmented Z8001, care must be exercised when changing the
two PSAP register values so that an interrupt occurring between the changing of
PSAPSEG and PSAPOFF is handled correctly. This is typically accomplished by first
disabling interrupts before changing PSAPSEG and PSAPOFF. The low order byte
of PSAPOFF should be 0.

Load From Control Register
LDCTL Rd, FCW

Rd (2:7) FCW (2:7)
Rd (11:15) — FCW (11:15) (Z8001 only)
Rd (11:14) FCW (11:14) (Z8002 only)
Rd (0:1) — UNDEFINED
Rd (8:10) UNDEFINED
Rd (15) — 0 (Z8002 only)

LDCTL Rd, REFRESH

Rd (1:8) REFRESH (1:8)
Rd (0) UNDEFINED
Rd (9:15) UNDEFINED

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

74

Privileged LDCTL
Load Control

Operation:

Operation:

Operation:

LDCTL Rd, PSAPSEG

Rd (8:14) PSAPSEG (8:14)
Rd (0:7) ^ UNDEFINED
Rd (15) UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSAPSEG: | | segment number ["" - * , ̂ |

I H U H ‘................
M - . m i...........................- . _ z i

-̂--------------------------undef ined-----------------^

This instruction may not be used in the nonsegrriented version.

LDCTL Rd, PSAPOFF
Rd, PSAP

Rd (8:15) — PSAPOFF (8:15)
Rd (0:7) — UNDEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* PSAPOFF: | offset (upper byte) | ,...• ..,]

I I lr u |r u jr | ____________________
Rd: | t t [t | | [| undefined ~~|

*PSAP in nonsegmented mode

In nonsegmented mode, the mnemonic PSAP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
PSAPOFF.

LDCTL Rd, NSPSEG

Rd (0:15) NSPSEG (0:15)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

NSPSEG: | ..iii'inmimn
This instruction is not available in nonsegmented mode.

75

LDCTL
Load Control

Privileged

Operation:

LDCTL Rd, NSPOFF
Rd, NSP

Rd (0:15) - - NSPOFF (0:15)
1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

* NSPOFF:

J i n i n n m
Rd:

Flags:

*NSP in nonsegmented mode

In nonsegmented mode, the mnemonic NSP should be used in the assembly
language statement, and it indicates the same control register as the mnemonic
NSPOFF.

No flags affected, except when the destination is the Flag and Control Word (LDCTL
FCW, Rs), in which case all the flags are loaded from the source register.

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

LDCTL FCW, Rs

LDCTL REFRESH, Rs

LDCTL PSAPSEG, Rs

LDCTL PSAPOFF, Rs
PSAP, Rs

LDCTL NSPSEG, Rs

LDCTL NSPOFF, Rs
NSP, Rs

0 1 1 1 1 1 0 1 Rs 1 0 1 0

0 1 1 1 1 1 0 1 Rs 1011

0 1 1 1 1 1 0 1 Rs 110 1

0 1 1 1 1 1 0 1 Rs 1111

0 1 1 1 1 1 0 1 Rs 1 0 1 0

0 1 1 1 1 1 0 1 Rs 1 0 1 1

0 1 1 1 1 1 0 1 Rs 1 1 0 0

0 1 1 1 1 1 0 1 Rs 1 1 0 1

0 1 1 1 1 1 0 1 Rs 1 1 1 0

0 1 1 1 1 1 0 1 Rs 11 1 1

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

LDCTL Rd, FCW

LDCTL Rd, REFRESH

LDCTL Rd, PSAPSEG

LDCTL Rd, PSAPOFF
LDCTL Rd, PSAP
LDCTL Rd, NSPSEG

LDCTL Rd, NSPOFF
Rd, NSP

0 1 1 1 1 1 0 1 Rd 0 0 1 0

0 1 1 1 1 1 0 1 Rd 0 0 1 1

0 1 1 1 1 1 0 1 Rd 01 0 1

0 1 1 1 1 1 0 1 Rd 0 1 1 1

0 1 1 1 1 1 0 1 •Rd 0 0 1 0

0 1 1 1 1 1 0 1 Rd 0 0 1 1

0 1 1 1 1 1 0 1 Rd 0 1 0 0

0 1 1 1 1 1 0 1 Rd 0 1 0 1

0 1 1 1 1 1 0 1 Rd 0 1 1 0

0 1 1 1 1 1 0 1 Rd 0 1 1 1

76

LDCTLB
Load Control Byte

LDCTLB dst, src dst: FLAGS
src: R
or
dst: R
src: FLAGS

Operation: dst src

This instruction is used to load the FLAGS register or to transfer its contents into a
general-purpose register. Note that this is-not a privileged instruction.

Load Into FLAGS Register
LDCTLB FLAGS, Rbs

FLAGS (2:7) V src (2:7) ..

The contents of the source (a byte register) are loaded into the FLAGS register. The
lower two bits of the FLAGS register and the entire source register are unaffected.

7 6 5 4 3 2 1 0

Rbs: |
i i i i i

0 0

i l < 1 1
FLAGS: M f : | s |p/v| D | H | |

*
reserved

Load From FLAGS Register
LDCTLB Rbd, FLAGS '

dst (2:7) FLAGS (2:7)
dst (0: 1) <4-0 .

The contents of the upper six bits of the FLAGS register are loaded into the destina
tion (a byte register). The lower two bits of the destination register are cleared to
zero. The FLAGS register is unaffected.

7 6 5 4 3 2 1 0

FLAGS: I c I z I s |p/v| d I h [I

L i l l i
Rbd: l I ° , ° l

Flags: When the FLAGS register is the destination, all the flags are loaded from the
source. When the FLAGS register is the source, none of the flags are affected.

77

LDCTLB
Load Control Byte

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

LDCTLB FLAGS, Rbs

LDCTLB Rbd, FLAGS

7

7

7

7

I 1 0 0 0 1 1 0 0 | Rs 1 1 0 0 1 | I 1 0 0 0 1 1 00 | Rs | 10 01 |

| 1 0 0 0 1 1 0 0 | Rd 0 0 0 1 | | 1 00 0 1 1 00 | Rd | 0 0 0 1 |

7 8

LDD
Load and Decrement

LDD dst, src(r dst: IR
LDDB src: IR

Operation: dst •*- src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
r r - 1

This instruction is used for block transfers of strings of data. The contents of the loca
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LDDB, or by two if LDD, thus moving the pointers to the previous elements in
the strings. The source destination, and counter registers must be separate and non
overlapping registers. The word register specified by "r" (used as a counter) is then
decremented by one.

Flags: C: Unaffected
Z: Undefined
S: Unaffected .
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: LDD @RsL @RdL r
LDDB @Rsi, @RdL r 1 0 1 1 1 0 1 |w R# * 0 1 0 0 1

0 0 0 0 r Rd * 0 1 0 0 0

101 1 10 1 |w Rs * 0 1 0 0 1

0 0 0 0 | r Rd * 0 1 0 0 0

Example: In nonsegmented mode, if register R1 contains %202A, register R2 contains %404A,
the word at location %404A contains %FFFF, and register R3 contains 5,
the instruction

LDD ®R1, @R2, R3
will leave the value %FFFF at location %202A, the value %2028 in Rl, the value
%4048 in R2, and the value 4 in R3. The V flag will be cleared. In segmented mode,
register pairs would be used instead of Rl and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

79

LDDR
Load, Decrement and Repeat

LDDR dst, src, r dst: IR
LDDRB src: IR

Operation: dst src
AUTODECREMENT dst and src (by 1 if byte, by 2 if word)
r t - 1
repeat until r = 0

This instruction is used for block transfers of strings of data. The contents of the loca
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then decremented by
one if LdDRB, or by two if LDDR, thus moving the pointers to the previous elements
in the strings. The word register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until the result of decremen
ting r is zero. The source, destination, and counter registers must be separate and
non-overlapping registers. This instruction can transfer from 1 to 65536 bytes or from
1 to 32768 words (the value for r must not be greater than 32768 for LDDR).
The effect of decrementing the pointers during the transfer is important if the source

' and destination strings overlap with the. source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing
the pointers ensures that the source string will be copied without destroying the
overlapping area.
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted. .

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDDR @Rdl, @RsL r
LDDRB @Rdl, @RsL r 101 1101 |w Rs 1 00 1

0 0 0 0 r Rd 0 0 0 0

1 0 1 1 1 0 1 | w Rs 1001

0 0 0 0 | r Rd 0 0 0 0

80

LDDR
Load, Decrement and Repeat

Example: In nonsegmented mode, if register Rl contains %202A, register R2 contains %404A,
the words at locations %4040 through %404A all contain %FFFF, and register R3
contains 6, the instruction

LDDR @ R1,@R2,R3 .
will leave the value %FFFF in the words at locations %2020 through %202A, the
value %201E in Rl, the value %403E in R2, and 0 in R3. The V flag will be set. In
segmented mode, register pairs would be used instead of Rl and R2.

Note 1: Word register in nonsegmented mode, register pair in segmented mode. '
Note 2: n = number of data elements transferred.

81

LDI
Load and Increment

dst: IR
src: IR

LDI dst(src, r
LDIB

Operation: dst src
AUTOINGREMENT dst and src (by 1 if byte, by 2 if word)
r r - I

This instruction is used for block transfers of strings of data. The contents of the loca
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIB, or by two if LDI, thus moving the pointers to the next elements in the
strings. The source, destination, and counter registers must be separate and non
overlapping registers. The word register specified by "r" (used as a counter) is then
decremented by one.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero, cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: LDI @RdL @RsL r
LDIB @RdL @RsL r

1 0 1 1 1 0 1 |w Rs * 0 0 0 0 1

0 0 0 0 | r Rd * 0 1 0 0 0

1 0 1 1 1 0 1 | W Rs * 0 0 0 0 1

0 0 0 0 r Rd * 0 1 0 0 0

Example: This instruction can be used in a "loop" of instructions which transfers a string of
data from one location to another, but an intermediate operation on each data ele
ment is required. The following sequence transfers a string of 80 bytes, but tests for

‘ a special value (°/oOD, an ASCII return character) which terminates the loop if
found. This example assumes nonsegmented mode. In segmented mode, register
pairs would be used instead of R1 and R2.

LD R3, #80 !initialize counter!
LDA Rl, DSTBUF !load start addresses!
LDA R2, SRCBUF

CPB @R2, #%0D !check for return character!
JR EQ, DONE lexit loop if found!
LDIB ®R1, @R2 , R3 !transfer next byte!
JR NOV, LOOP !repeat until counter = 0!

DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

82

LDIR
Load, Increment and Repeat

LDIR dst, src, r dst: IR
LDIRB src: IR

Operation: dst •*- src
AUTOINCREMENT dst and src (by 1 if byte; by two if word)
r • * - r - 1
repeat until R = 0

This instruction is used for block transfers of strings of data. The contents of the loca
tion addressed by the source register are loaded into the location addressed by the
destination register. The source and destination registers are then incremented by
one if LDIRB, or by two if LDIR, thus moving the pointers to the next elements in the
strings. The word register specified by "r" (used as a counter) is then decremented
by one. The entire operation is repeated until the result of decrementing r is zero.
The source, destination, and counter registers must be separate and non-overlapping
registers. This instruction can transfer from 1 to 65536 bytes or from 1 to 32768
words (the value for r must not be greater than 32768 for LDIR).
The effect of incrementing the pointers during the transfer is important if the source
and destination strings overlap with the source string starting at a higher memory
address. Placing the pointers at the lowest address of the strings and incrementing .
the pointers ensures that the source string will be copied without destroying the
overlapping area.
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven cycles
should be added to this instruction's execution time for each interrupt request that is
accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected .

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: LDIR <&RcU , (S Rs1, r
LDIRB ©Rd1, @Rsl, r 1 0 1 1 1 0 1 |w Rs * 0 0001

0000 I r Rd * 0 0000

1 0 1 1 1 0 1] w R# * 0 0 0 0 1

0000 | r Rd * 0 0 0 0 0

83

LDIR
Load, Increment and Repeat

Example: The following sequence of instructions can be used in nonsegmented mode to copy a
buffer of 512 words (1024 bytes) from one area to another. The pointers to the start of
the source and destination are set, the number of words to transfer is set, and then
the transfer takes place.

LDA Rl, DSTBUF
LDA R2, SRCBUF
LD R3, #512
LDIR @R1, @R2-, R3

In segmented modfe, Rl and R2 must be replaced by register pairs.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements transferred. .

84

LDK
Load Constant

LDK dst, src dst: R
src: IM

Operation: dst src (src = 0 to 15)

The source operand (a constant value specified in the src field) is loaded into the
destination register. The source operand is a value from 0 to 15. It is loaded into the
four low-order bits of the destination register, while the high-order 12 bits are
cleared to zero.

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: LDK Rd(#data 5 5|l o| 1 1 1 1 0 1 | Rd | data | 11 0 | 1 1 1 1 0 1 | Rd | data |

Example: To load register R3 with the constant 9:
LDK R3,#9

85

LDM
Load Multiple

LDM dst, src, n dst: R
src: IR, DA, X
or
dst: IR, DA, X
src: R

Operation: dst src(n words) .

The contents of n source words are loaded into the destination. The contents of the
source are/iot affected. The value of n lies between 1 and 16, inclusive. This instruc
tion moves information between memory and registers; registers are accessed in
increasing order starting with the specified register; RO follows R15. The instruction
can be used either to load multiple registers into memory (e.g. to save the contents
of registers upon subroutine entry) or to load multiple registers from memory (e.g. to
restore the contents of registers upon subroutine exit).
The instruction encoding contains values from 0 to 15 in the "num" field correspond
ing to values of 1 to 16 for n, the number of registers to be loaded or saved.
The starting address is computed once at the start of execution, and incremented by
two for each register loaded. If the original address computation involved a register,
the registers value will not be affected by the address incrementation during
execution. Similarly, modifying that register during a load from memory will not
affect the address used by this instruction.

Flags: No flags affected '

Load Multiple - Registers From Memory
Source

Addressing Assembler Language
Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format

IR: LDM Rd, &Rsi, #n

DA: LDM Rd, address, #n

X: LDM Rd, addr(Rs), #n

0 0 1 0 1 1 1 0 0 Rs*0 0 0 0 1

0 0 0 0 | Rd 0 0 0 0 num

0 1 1 0 1 1 1 0 0 0 0 0 0 00 0 1

0 0 0 0 | Rd 0 0 0 0 num

address

0 1 1 0 1 1 1 0 0 Rs*0 0 0 0 1

0 0 0 0 | Rd 0 0 0 0 num

address

11 +3n

14 + 3n

15 + 3n

oo| 0 1 1 1 0 0 Rs*0 0 0 0 1

0 0 0 0 | Rd 0 0 0 0 num

0 1 1 0 1 1 1 0 0 0 0 0 0 00 0 1

0 0 0 0 | Rd 0 0 0 0 num

0 1 segment offset

0 1 1 0 1 1 1 0 0 0 0 0 0 00 0 1

0 0 0 0 | Rd 0 0 0 0 num

1 1 segment 0 0 0 0 0 0 0 0

offset

01 | 0 1 1 1 0 0 Rs*0 0 0 0 1

0 0 0 0 | Rd 0 0 0 0 num

0 1 segment offset

0 1 | 0 1 1 1 0 0 Rs*0 0 0 0 1

0 0 0 0 | Rd 0 0 0 0 num

1 | segment 0 0 0 0 0 0 0 0

offset

Cycles

11 +3n

15 + 3n

17 + 3n

15 + 3n

18 + 3n

86

LDM
Load Multiple

Load Multiple - Memory From Registers
Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR:

DA:

X:

LDM&Rd1, Rs, §n

LDM address, Rs, #n

LDM addr(Rd), Rs, #n

0 0 1 0 1 1 1 0 0 Rd *0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num

0 l | 0 1 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num

0 1 | 0 1 1 1 0 0 Rd*0 10 0 1

0 0 0 0 | Rs 0 0 0 0 num

address

11 +3n

14 + 3n

15 + 3n

SS

SL

SS

SL

0 0 1 0 1 1 1 0 0 Rd *0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num .

0 1 | 0 1 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num

0 segment offset

0 1 | 0 1 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num

1 segment 0 0 0 0 0 0 0 0

offset

0 1 | 0 1 1 1 0 0 Rd*0 1 0 0 1

0 0 0 0 | Rs 0 0 0 0 num

0 segment offset

0 1 | 0 1 1 1 0 0 Rd * 0 1 00 1

0 0 00 | Rs 0 0 0 0 num

1 | segment 0 0 0 0 0 0 0 0

11 +3n

15 + 3n

17 + 3n

15 + 3n

18 + 3n

Example: In nonsegmented mode, if register R5 contains 5, R6 contains %0100, and R7 con
tains 7, the statement

LDM @R6, R5, #3 •
will leave the values 5, %0100, and 7 at word locations %0100, %0102, and % 0104,
respectively, and none of the registers will be affected. In segmented mode, a
register pair would be used instead of R6.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of registers.

87

LDPS Privileged
Load Program Status

LDPS src src: IR(DA, X

Operation: PS ■

The contents of the source operand are loaded into the Program Status (PS), loading
the Flags and Control Word (FCW) and the program counter (PC). The new value
of the FCW does not become effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the LDPS instruction
execution is completed. The next instruction executed is that addressed by the new
contents of the PC. The contents of the source are not affected.
This instruction is used to set the Program Status of a program and is particularly
useful for setting the System/Normal mode of a program to-Normal mode, or for run
ning a nonsegmented program in the segmented Z8001 version. The PC segment
number is not affected-by the LDPS instruction in nonsegmented mode.
The format of the source operand (Program Status block) depends on the current
Segmentation mode (not on the version of the Z8000) and is illustrated in the
following figure:

NONSEGMENTED

Flags:

LOW ADDRESS

HIGH ADDRESS

(shaded area is reserved—must be zero)

All flags are loaded from the source operand.

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format

10 0 1 1 1 1 001 | R s * 0 |0 0 0 0 |

0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0

0 1 segment offset

0 1 1 1 1 1 0 0 1 oooo|oooo
1 segment 0 0 0 0 0 0 0 0

offset

01 | 1 1 1 0 0 1 Rs*0 | 0 0 0 0

0 1 segment offset

01 | 1 1 1 0 0 1 Rs*0 | 0 0 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

Cycles

IR:

DA:

LDPS @Rsi

LDPS address

|° 0 |1 1 1 0 0 1 | Rs* 0 | oooo|

0 1 |1 1 1 0 0 1 I 0 0 0 0 I 0 0 0 0

address

12

16

X: LDPS addr(Rs)
01 1 1 1 0 0 1 Rs* 0 0 0 0 0

17

SS

SL

SS

SL

16

20

22

20

23

88

Privileged LDPS
Load Program Status

Example: In the nonsegmented Z8002 version, if the program counter contains %2550, register
R3 contains %5000, location %5000 contains %1800, and location %5.002 contains
%A000, the instruction

LDPS ®R3
will leave the value %A000 in the program counter, and the FCW value will be
%1800 (indicating Normal Mode, interrupts enabled, and all flags cleared.) In the
segmented mode, a register pair is used instead of R3. Note: Word register is used
in nonsegmented mode, register pair in segmented mode.

89

LDR
Load Relative

LDR dst, src dst: R
LDRB src: RA
LDRL or

dst: RA
src: R

Operation: dst ■«- src

The contents of the source operand are loaded into the destination. The contents of
the source are not affected. The relative address is calculated by adding the
displacement in the instruction to the updated value of the program counter (PC)
to derive the operand's address. In segmented mode, the segmented number of the
computed address is the same as the segment number of the PC. The updated PC
value is taken to be the address of the instruction byte following the LDR, LDRB, or
LDRL instruction, while the displacement is a 16-bit signed value in the range
-32768 to +32767.
Status pin information during the access to memory for the data operand will be Pro
gram Reference, (1100) instead of Data Memory request (1000).
The assembler automatically calculates the displacement by subtracting the PC value
of the following instruction from the address given by the programmer.
This instruction must be used to modify memory locations containing program infor
mation, such as the Program Status Area, if program and data space are allocated to
different segments.

Flags: No flags affected

Load Relative Register

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format- Cycles

RA: LDR Rd, address
LDRB Rbd, address

LDRL RRd, address

0 0 1 1 0 0 0 W 0 0 0 0 Rd

displacement

0 0 1 1 0 1 0 1 0 0 0 0

displacement

14

17

0 0 1 1 0 0 0 W 0 0 0 0 Rd

displacement

0 0 1 1 0 1 0 1 0 0 0 0 Rd

displacement

14

17

90

LDR
Load Relative

Load Relative Memory
Destination
Addressing Assembler Language

Mode Syntax

RA: LDR address, Rs
LDRB address, Rbs

LDRL address, RRs

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

001 1 0 0 1 | w | 0 0 0 0 I Rs

displacement

0 0 1 1 0 1 1 1 | 0 0 0 0 | ~r T

displacement

14

17

001 1 001|w|0000 | Rs

displacement

0 0 1 1 0 1 1 1 | 0 0 0 0 | Rs

displacement

14

17

Example: LDR R2, DATA ! register R2 is loaded with the value in the!
! location named DATA!

91

MBIT Privileged
Multi-Micro Bit Test

MBIT

Operation: S ■+- 1 if MI high (inactive); 0 otherwise

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro input pin (MI) is tested, and the S flag
is cleared if the pin is low (active); otherwise, the S flag is set, indicating that the
pin is high (inactive).
After the MBIT instruction is executed, the S flag can be used to determine whether
a requested resource is available or not. If the S flag is clear, then the resource is
not available; if the S flag is set. then the resource is available for use by this CPU.

Flags: C: Unaffected
Z: Undefined
S: Set if MI is high; cleared otherwise
V: Unaffected
D: Unaffected ’
H: Unaffected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

MBIT ' 7 7| 0111101100001010 | | 0111101100001010 |

Example: The following sequence of instructions can be used to wait for the availability of a
resource.

LOOP:
MBIT !test multi-micro input!
IR PL,LOOP Irepeat until resource is available!

AVAILABLE:

9 2

Privileged MREQ
Multi-Micro Request

Operation:

Flagg:

MREQ dst dst: R

Z - ^ 0
if MI low (active) then S 0

MO forced high (inactive)
else MO forced low (active)

repeat dst •*- dst - 1 until dst = 0
if MI low (active) then S 1

else S ■ * - 0
MO forced high (inactive)

Z — 1

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. A request for a resource is signalled through the multi
micro input and output pins (MI and MO), with the S and Z flags indicating the
availability of the resource after the MREQ instruction has been executed.
First, the Z flag is cleared. Then the MI pin is tested. If the MI pin is low (active),
the S flag is cleared and the MO pin is.forced high (inactive),thus indicating that the
resource is not available and removing any previous request by the CPU from the
MO line.
If the MI pin is high (inactive), indicating that the resource may be available, a
sequence of machine operations occurs. First, the MO pin is forced low (active),
signalling a request by the CPU for the resource. Next, a finite delay to allow for
propagation of the signal to other processors is accomplished by repeatedly
decrementing the contents of the destination (a word register) until its value is zero.
Then the MI pin is tested to determine whether the request for the resource was
acknowledged. If the MI pin is low (active), the S flag is set to one, indicating that
the resource is available and access is granted. If the MI pin is still high (inactive),
the S flag is cleared to zero, and the MO pin is forced high (inactive), indicating
that the request was not granted and removing the request signal for the MO.
Finally, in either case, the Z flag is set to one, indicating that the original test of the
MI pin caused a request to be made.

S flag Z flag MO Indicates

0 0 high Request not signalled
(resource not available)

0 1 high Request not granted
(resource not available)

1 1 low Request granted
(resource available)

C: Unaffected
Z: Set if request was signalled; cleared otherwise
S: Set if request was signalled and granted; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

93

MREQ Privileged
Multi-Micro Request

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles1 Instruction Format Cycles1

R: MREQ. Rd 12 + 7n 12 + 7n|oi| 111011 | Rd 1 1 1 01 | |oi| 111011 | Rd | 1 1 01 |

Example: TRY:
LD R0,#50 lallow for propagation delay!
MREQ RO !multi-micro request with delay!

. !in register RO!
JR MI,AVAILABLE
JR Z,NOT_QR ANTED

! resource not available!

!request not granted!

!try again after awhile!
fuse resource!

! release resource!

NOT__AVAILABLE:

NOT_GR ANTED:

JR TRY
AVAILABLE:

MRES

Note 1: If the request is made, n = number of times the destination is decremented. If the request is not made,
n = 0.

94

Privileged MRES
Multi-Micro Reset

MRES

Operation: MO is forced high (inactive)

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro output pin MO is forced high (inactive).
Forcing MO high (inactive) indicates that a resource controlled by the CPU is
available for use by other processors.

Flags: No flags affected.

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

MRES 5 5| 01111011 | 00001001 | I 0111 1011 | 00001001 |

Example: MRES !signal that resource controlled by this CPU!
iis available to other processors!

95

MSET
Multi-Micro Set

Privileged

MSET

Operation: MO is forced low (active)

This instruction is used to synchronize multiple processors' exclusive access to
shared hardware resources. The multi-micro output pin MO is forced low (active).
Forcing MO low (active) is used either to indicate that a resource controlled by the
CPU is not available to other processors, or to signal a request for a resource con
trolled by some other processor.

Flags: No flags affected.

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

MSET 5 5| 01111011 | 00001000 | | 01111011 | 00001000 |

Example: MSET !CPU controlled resource not available!

96

MULT
Multiply

Operation:

Flags:

MULT dst, src dst: R
MULTL src: R(IM, IR, DA, X

Word
dst (0:31) «*- dst (0:15) x src (0:15)
Long
dst (0:63) dst (0:31) x src (0:31)

The low-order half of the destination operand (multiplicand) is multiplied by the
source operand (multiplier) and the product is stored in the destination. The con
tents of the source are not affected. Both operands are treated as signed, two's com
plement integers. For MULT, the destination is a register pair and the source is a
word value; for MULTL, the destination is a register quadruple and the source is a
long word value.
For proper instruction execution, the "dst field" in the instruction format encoding
must be even for MULT and must be a multiple of 4 (0, 4, 8, 12) for MULTL. If the
source operand in MULTL is a register, the "src field" must be even.
The initial contents of the high-order half of the destination register do not affect the
operation of this instruction and are overwritten by the result. The carry flag is set to
indicate that the upper half of the destination register is required to represent the
result; if the carry flag is clear, the product can be correctly represented in the same
precision as the multiplicand and the upper half of the destination merely holds a
sign extension.
The following table gives execution times for word and long word operands in each
possible addressing mode.

src Word Long Word
NS SS SL NS SS SL

R 70 70 70 282 +7*n 282 + 7*n 282 + 7*n
IM 70 70 70 282+7*n 282 + 7*n 282 + 7*n
IR 70 70 70 282 + 7*n 282+7*n 282 + 7*n

DA 71 72 74 283+7*n 284+7*n 286 + 7*n
X 72 72 75 284 + 7*n 284 + 7*n 287 + 7*n

(n = number of bits equal to one in the absolute value of the low-order table 32 bits of the destination operand)

When the multiplier is zero, the execution time of Multiply is reduced to the following times:

src Word Long Word
NS SS SL NS SS SL

R 18 18 18 30 30 30
IM 18 18 18 30 30 30
IR 18 18 18 30 30 30

DA 19 20 22 31 32 34
X 20 20 23 32 32 35

C: MULT—set if product is less than -231 or greater than or equal to 215; cleared
otherwise; MULTL—set if product is less than 231 or greater than or equal to 231;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

97

MULT
Multiply

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IM:

IR:

DA:

X:

MULT RRd, Rs

MULTL RQd, RRs

MULT RRd, #data

MULTL RQd, #data

MULT RRd, @Rsi

MULTL RQd, @Rsi

MULT RRd, address

MULTL RQd, address

MULT RRd, addr(Rs)

MULTL RQd, addr(Rs)

R 0 1 1 0 0 1 I * I Rd |

H 0 1 1 0 0 0 I Rs I Rd |

0 1 1 0 0 1 I 0 0 0 0 | Rd

data

0 0 0 1 1 0 0 0 0 0 0 0 Rd

31 data (high)

data (low)

00 0 1 1 0 0 1 Rs* 0 Rd

00 01 1 0 0 0 Rs*0 Rd

0 1 1 0 1 1 0 01 I 0 0 0 0 I Rd

address

0 1 | 0 1 1 0 0 0 | 0 0 0 0 | Rd

address

0 1 | 0 1 1 0 0 1 | R s * 0 | Rd

address

0 1 1 01 1 0 0 0 | Rs*0 | Rd

address

1 0 0 1 1 0 0 1 Rs

1 0 0 1 1 0 0 0 Rs

0 0 0 1 1 0 0 1 0 0 0 0 Rd

00 01 1 0 0 0 0 0 0 0 Rd

data (high)

data (low)

[oo| 0 1 1 0 0 1 Rs*0 Rd

00 01 1 0 0 0 Rs*0 Rd

ss

SL

SS

SL

SS

SL

SS

SL

0 11 0 1 1 0 0 1 0 0 0 0 | Rd

0 segment offset

0 1 1 0 1 1 0 0 1 0 0 0 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

01 | 0 1 1 0 0 0 0 0 0 0 | Rd

0 1 segment offset

0 1 1 0 1 1 0 0 0 0 0 0 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

01 0 1 1 0 0 1 Rs*0 | Rd

0 segment offset

01 0 1 1 0 0 1 Rs* 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

01 | 0 1 1 0 0 0 Rs * 0 | Rd

0 1 segment offset

0 11 0 1 1 0 0 0 Rs* 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

98

Example:

MULT
Multiply

If register RQO (composed of register pairs RRO and RR2) contains
%2222222200000031 (RR2 contains decimal 49), the statement

MULTL RQO,#10
will leave the value %00000000000001EA (decimal 490) in RQO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: Execution times for each instruction are given in the preceding tables.

99

NEG
Negate

NEG dst dst: R, IR, DA, X
NEGB

Operation: dst dst

Flags:

The contents of the destination are negated, that is, replaced by its two's comple
ment value. Note that %8000 for NEG and %80 for NEGB are replaced by
themselves since in two's complement representation the negative number with
greatest magnitude has no positive counterpart; for these two cases, the V flag is set.

C: Cleared if thd result is zero; set otherwise, which indicates a "borrow"
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if the result is %8000 for NEG, or %80 for NEGB: cleared otherwise
D: Unaffected -
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IR:

DA:

NEG Rd
NEGB Rbd

NEG @Rdi
NEGB @Rdi

NEG address
NEGB address

1 0 001 1 0 W Rd 0010

00 001 1 0 W Rd*0 001 0

0 1 0 0 1 1 0 W 0 0 0 0 0 0 1 0

7

12

15

1 0 001 1 0 W Rd 0010

00 001 1 0 W Rd*0 001 0

NEG addr(Rd)
NEGB addr(Rd) 0100110 W Rd*0 0010

16

SS

SL

SS

SL

01 |o 0 1 1 o|w 0000|0010

01 segment offset

o 1 |o o 11 o|w 0 0 0 0 |0010
11 segment 0000 0000

offset

01 |o 0 1 1 o|w Rd*0 |001 0

01 segment offset

0 1 10 0 1 1 o|w Rd*0 0010

1 | segment 0000 0000

12

16

18

16

19

Example: If register R8 contains %051F, the statement
NEG R8

will leave the value %FAE1 in R8.

Note 1: Word register,.in nonsegmented mode, register pair in segmented mode.

100

NOP
No Operation

NOP

Operation: No operation is performed.

Flags: No flags affected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

NOP 7 7| 10001101 | 00000111 | |10001101 | 00000111 |

101

OR
Or

OR dst, src dst: R
ORB src: R, IM, IR, DA, X

Operation: dst dst OR src

The source operand is logically ORed with the destination operand and the result is
stored in the destination. The contents of the source are not affected. The OR opera
tion results in a one bit being stored whenever either of the corresponding bits in the
two operands is one; otherwise a zero bit is stored.

Flags: C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: OR—unaffected; ORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing

Mode
Assembler Language

Syntax

R: OR Rd, Rs
ORB Rbd, Rbs

IM: OR Rd, #data

ORB Rbd, #data

IR: OR Rd, @Rs!
ORB Rbd, @Rs'

DA: OR Rd, address
ORB Rbd, address

X: OR Rd, addr(Rs)
ORB Rbd, addr(Rs)

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

11 0 0 0 0 1 0 W' Rs Rd

0 0 0 0 0 1 0 1 0 0 0 0 Rd

0 0 1 0 0 0 1 00 0 0 0 0 | Rd

data data

| o o | o Q0 1 o|w| Rs*0 | Rd |

01 |o 0 0 1 o|w| 0000 | Rd

address

0l| o0 0 1 o|w| Rs*0 | Rd

address

1 0 0 0 0 1 0 W Rs Rd

0 0 0 0 0 1 0 1 0 0 0 0 Rd

0 0 1 0 0 0 1 00 0 0 0 0 | Rd

data data

00 0 0 0 1 0 W Rs*0 Rd

10

SS

SL

SS

SL

o i | o o o i o | w 0 0 0 0 | Rd

0 1 segment offset

0 1 |o 0 0 1 o | w 0 0 0 0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

0 1 |o 0 0 1 o | w Rs*0 | Rd

0 1 segment offset

01 |o o o 1 o | w Rs*0 | Rd

1 | segment 0 0 0 0 0 0 0 0

address

10

12

10

1 3

102

OR
Or

Example: If register RL3 contains %C3 (11000011) and the source operand is the immediate
value %7B (01111011), the statement

ORB RL3,#%7B
will leave the value %FB (11111011) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

103

OTDR (SOTDR) Privileged
(Special), Output, Decrement and Repeat

OTDR dst, src, r dst: IR
OTDRB src: IR
SOTDR
SOTDRB

Operation: dst src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r r - 1
repeat until r = 0

This instruction is used for block output of strings of data. OTDR and OTDRB are
used for normal I/O operation; SOTDR and SOTDRB are used for special I/O opera
tion. The contents of'the memory location addressed by the source register are
loaded into the I/O port addresses by the destination word register. I/O port
addresses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by "r" (used as a
counter) is then decremented by one. The address of I/O port in the destination
register is unchanged. The entire operation is repeated until the result of decrement
ing r is zero. This instruction can output from 1 to 65536 bytes or 32768 word (tl̂ e
value for r must not be greater than 32768 for OTDR or SOTDR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
request is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt request
that is accepted. '

Flags: C: Unaffected
Z: Undefined
S: Unaffected ■
V: Set ' ,
D: Unaffected

' H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: OTDR @Rd,@Rsh r
OTDRB @Rd,@Rsi, r

SOTDR @Rd,@Rsh r
SOTDRB @Rd,@Rsi, r

0011101 |w Rs * 0 1 01 S

0 0 0 0 | r Rd * 0 0 0 0 0

0 0 1 1 1 01 |w Rs * 0 1 01 S
0 0 0 0 | r Rd * 0 0 0 0 0

104

Privileged OTDR (SOTDR)
(Special), Output, Decrement and Repeat

Example: In nonsegmented mode, if register R ll contains %0FFF, register R12 contains
%B006, and R13 contains 6, the instruction

OTDR @R11, @R12, R13
will output the string of words from locations %B006 to %AFFC (in descending
order of address) to port %0FFF. R12 will contain °/oAFFA, and R13 will contain 0.
R ll will not be affected. The V flag will be set. In segmented mode, R12 would be
replaced by a register pair.

Note 1: W ord register in n onsegm ented m ode, register p air in segm ented m ode.
Note 2 : n = num ber of data elem ents transferred .

105

OUR (SOTIR) Privileged
(Special) Output, Increment and Repeat

OTIR dst, src, r dst: IR
OTIRB src: IR
SOTIR
SOTIRB

Operation: dst «•- src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
r r - 1
repeat until r = 0

This instruction is used for block output of strings of data. OTIR and OTIRB are used
for normal I/O operation; SOTIR and SOTIRB are used for special I/O operation.
The contents of the memory location addressed by the source register are loaded

. into the I/O port addressed by the destination word register. I/O port addresses are
16 bits. The source register is then incremented by one if a byte instruction, or by
two if a word instruction, thus moving the pointer to the next element of the string in
memory. The word register specified by "r" (used as a counter) is then decremented
by one. The address of I/O port in the destination register is unchanged. The entire
operation is repeated until the result of decrementing r is zero. This instruction can
output from 1 to 65536 bytes or 32768 words (the value for r must not be greater than
32768 for OTIR or SOTIR).
This instruction can be interrupted after each execution of the basic operation. The
program counter value of the start of this instruction is saved before the interrupt
reguest is accepted, so that the instruction can be properly resumed. Seven more
cycles should be added to this instruction's execution time for each interrupt reguest
that is accepted.

Flags: C: Unaffected
Z: Undefined 1
S: Unaffected

. V: Set
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: OTIR @Rd, @Rsl, r
OTIRB @Rd, @Rsb r
SOTIR @Rd, @RsJ, r
SOTIRB @Rd, @Rsi, r

0 0 1 1 1 0 1 |w Rs * 0 001 S
0 0 0 0 r Rd * 0 0 0 0 0

0 0 1 1 1 0 1 |w R* * 0 001 S

0 0 0 0 r Rd * 0 0 0 0 0

106

Privileged OTIR (SOTIR)
(Special) Output, Increment and Repeat

Example: In nonsegmented mode, the following seguence of instructions can be used to output
a string of bytes to the specified I/O port. The pointers to the I/O port and the start
of the source string are set, the number of bytes to output is set, and then the output
is accomplished.

LD Rl, #PORT
LDA R2; SRCBUF
LD R3, ^LENGTH
OTIRB @R1, @R2, R3

In segmented mode, a register pair would be used instead of R2.

Note 1: W ord register in nonsegm ented m ode, register pair in segm ented m ode.
Note 2 : n - num ber of data elem ents transferred.

107

OUT (SOUT) Privileged
(Special) Output

OUT dst, src
OUTB
SOUT dst(src
SOUTB

dst: IR, DA
src: R
dst: DA
src: R

Operation: dst src

Flags:

The contents of the source register are loaded into the destination, an Output or
Special Output port. OUT and OUTB are used for normal I/O operation; SOUT and
SOUTB are used for special I/O operation.

No flags affected.

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

IR: OUT d*Rd, Rs
OUTB <&'Rd, Rbs

OUT port, Rs
OUTB port, Rbs
SOUT port, Rs
SOUTB port, Rbs

1I 0 0 1 1 1 1 1 |w|Rd* 0 Rs 1 10 II 0 0 1 1 1 1 1 Iw|R d * 0 Rs I 10

DA: 0 0 1 1 1 0 1 |w] Rs |01 I S 12 0 0 1 1 1 0 1 | w| Rs |0 1 1 S 12
port port

Example: If register R6 contains %5252, the instruction
OUT % 1 120, R6

will output the value %5252 to the port %1120.

108

Privileged OUTD (SOUTD)
(Special) Output and Decrement

OUTD dst, src, r dst: IR
OUTDB src: IR
SOUTD
SOUTDB

Operation: dst src
AUTODECREMENT src (by 1 if byte, by 2 if word)
r r - 1

This instruction is used for block output of strings of data. OUTD and OUTDB are
used for normal I/O operation; SOUTD and SOUTDB are used for special I/O opera
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port
addresses are 16 bits. The source register is then decremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the previous
element of the string in memory. The word register specified by "r" (used as a
counter) is then decremented by one. The address of the I/O port in the destination
register is unchanged.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: OUTD @Rd, @Rsi, r
OUTDB @Rd, @Rsh r
SOUTD @Rd, @Rsh r
SOUTDB @Rd, @Rsi, r

0011101 |wRs * 0 1 0 1 S

0 0 0 0 | r Rd 1 0 0 0
21

0011101 |w Rs * 0 1 01 S

0 0 0 0 r Rd 1 0 0 0

Example: In segmented mode, if register R2 contains the I/O port address %0030, register RR6
contains % 12005552 (segment %12, offset %5552), the word at memory location
% 12005552 contains % 1234, and register R8 contains % 1001, the instruction

OUTD @R2, @RR6, R8
will output the value %1234 to port %0030 and leave the value % 12005550 in RR6,
and %1000 in R8. Register R2 will not be affected. The V flag will be cleared. In
nonsegmented mode, a word register would be used instead of RR6.

Note 1: W ord register in n on segm ented m ode, re g iste^ p air in segm ented m ode.

109

OUTI (SOUTI) Privileged
(Special) Output and Increment

OUTI dst, src, r dst: IR
OUTIB src: IR
SOUTI
SOUTIB

Operation: dst src
AUTOINCREMENT src (by 1 if byte, by 2 if word)
r r - 1

This instruction is used for block output of strings of data. OUTI and OUTIB are
used for normal I/O operation; SOUTI and SOUTIB are used for special I/O opera
tion. The contents of the memory location addressed by the source register are
loaded into the I/O port addressed by the destination word register. I/O port
addresses are 16-bit. The source register is then incremented by one if a byte
instruction, or by two if a word instruction, thus moving the pointer to the next ele
ment of the string in memory. The word register specified by "r'' (used as a counter) ‘
is then decremented by one. The address of the I/O port in the destination register is
unchanged.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: OUTI @Rd(@Rsl, r
OUTIB @Rd, ®Rsi, r
SOUTI @Rd, @Rsl, r
SOUTIB @Rd, @Rsl, r

0011101|w Rs * 0 001 S

OOOO'j r Rd * 0 1000

0 0 1 1 1 0 1 |w R* * 0 001 S

0 0 0 0 | r Rd * 0 1 0 0 0

110

Privileged OUTI (SOUTI)
(Special) Output and Increment

Example: This instruction can be used in a "loop" of instructions which outputs a string of
data, but an intermediate operation on each element is required. The following
sequence outputs a string of 80 ASCII characters (bytes) with the most significant bit
of each byte set or reset to provide even parity for the entire byte. Bit 7 of each
character is initially zero. This example assumes nonsegmented mode. In segmented
mode, R2 would be replaced with a register pair.

LD
LDA
LD

Rl, #PORT
R2, SRCSTART
R3, #80

!loa^ I/O address!
!load start of string!
{initialize counter!

LOOP:
TESTB
IR
SETB

@R2
PE, EVEN
@R2, #7

Rest byte parity!

!force even parity!
EVEN:

OUTIB
JR

@R1, @R2, R3
NOV, LOOP

! output next byte!
! repeat until counter = 0!

DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

I l l

POP
Pop

POP dst, src
POPL

dst: R, IR, DA, X
src: IR

Operation:

Flags:

dst src
AUTOINCREMENT src (by 2 if word, by 4 if long)

The contents of the location addressed by the source register (a stack pointer) are
loaded into the destination. The source register is then incremented by a value
which equals the size in bytes of the destination operand, thus removing the top ele
ment of the stack by changing the stack pointer. Any register except RO (or RRO in
segmented mode) can be used as a stack pointer.
With the POPL instruction, the same register cannot be used in both the source and
destination addressing fields.

No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

IR:

DA:

POP Rd, @Rsi

POPL RRd, @Rsi

POP @Rdi, @Rsi

POPL @Rdi, @Rsi

POP address, @Rsl

0 1 0 1 1 1 Rs * 0

0 l | 0 1 0 1 1 1 I Rs^O | 0 0 0 0

address

Rd |

8

12

12

19

16

10 0 1 0 1 1 1 R s ^ O Rd

| i o | 0 1 0 1 0 1 |Rs ^ o | Rd |

00 01 01 1 1 Rs* 0 Rd * 0

00 01 01 01 Rs* 0 IRd ^0 I

POPL address, @Rs!
01 0 1 0 1 0 1 Rs*0 0 0 0 0 23

12

12

19

16

19

23

26

112

POP
Pop

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

POP addr(Rd), @Rs>
0 1 0 10 111 Rs*0 Rd * 0

1 6

POPL addr(Rd), @RSl
0 1 0 1 0 1 0 1 Rs^tO Rd*0

2 3

ss

SL

SS

SL

Segmented Mode

Instruction Format

0 1 | 0 1 0 1 1 1 Rs* 0 | Rd*0

0 1 segment offset

0 1 | 0 10 111 Rs*0 | Rd*0

1 1 segment 0 0 0 0 0 0 0 0

offset

0 11 0 1 0 1 0 1 Rs*0 | Rd*0

0 1 segment offset

0 1 | 0 1 0 1 0 1 R s* o | Rd*0

1 | segment 0 0 0 0 0 0 0 0

offset

Cycles

1 6

1 9

2 3

26

Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1000, the word at
location %1000 contains %0055, and register R3 contains %0022, the instruction

POP R3, @R12
will leave the value %0055 in R3 and the value %1002 in R12. In segmented mode,
a register pair must be used as the stack pointer instead of R12.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

113

PUSH
Push

PUSH dst, src
PUSHL

dst: IR
src: R, IM, IR, DA, X

Operation: AUTODECREMRNT dst (by 2 if word, by 4 if long)
dst src

Flags:

The contents of the destination register (a stack pointer) are decremented by a value
which eguals the size in bytes of the source operand. Then the source operand is
loaded into the location addressed by the updated destination register, thus adding a
new element to the top of the stack by changing the stack pointer. Any register
except RO (or RRO in segmented mode) can be used as a stack pointer.
With PUSHL, the same register cannot be used for both the source and destination
addressing fields.

No flags affected

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IM:

IR:

DA:

PUSH <&Rdi, Rs

PUSHL &Rdb RRs

PUSH- (^Rd1, #data

PUSH Rd1, C«RS1

PUSHL («Rd1, tf'Rsi

PUSH (" Rd1, address

10 0 1 0 0 1 1 Rd*0 Rs

10 0 1 0 0 0 1 Rd*Q Rs

00 001 1 0 1 Rd*0 1 001

10 0 1 0 1 001 1 | Rd*0 | Rs * o|

00 0 1 0 0 0 1 Rd*0 Rs * 0

01 0 1 0 0 1 1 Rd*0 0 0 0 0

9

12

12

13

20

14

110 0 1 0 0 1 1 Rd*0 jEH
10 0 1 0 0 0 1 Rd*0 Rs

00 0 0 1 1 0 1 Rd*0 1 001

00 01 001 1 Rd*0 Rs * 0

00 01 0 0 0 1 Rd*0 Rs * 0

PUSHL@RdL address
01 0 1 0 0 0 1 Rd*0 0 0 0 0

21

SS

SL

SS

SL

0 11 0 1 0 0 1 1 Rd*0 | 0 0 0 0

0 1 segment offset

0 1 1 0 1 0 0 1 1 R d * 0 | 0 0 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

0 1 1 0 1 0 0 01 R d * 0 | 0 0 0 0

0 1 segment offset

01 | 0 1 0 0 0 1 Rd*0 0 0 0 0

1 segment 0 0 0 0 00 00

offset

9

12

12

13

20

14

17

13 -

24

114

PUSH
Push

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X: PUSH @Rdl, addr(Rs)

PUSHL @Rdl, addr(Rs)

01 0 1 0 0 1 1 Rd*0 Rs*0

01 I 01 0 0 0 1 Rd*0 Rs* 0

14

21

SS

SL

SS

SL

0 1 | 0 1 0 0 1 1 Rd*0 | Rs*0

0 1 segment offset

0 11 0 1 0 0 1 1 Rd*0 | Rs*0

1 | segment 0 0 0 0 0 0 0 0

offset

01 | 01 0 0 0 1 Rd*0 | Rs*0

0 1 segment offset

0 11 01 0 0 0 1 Rd*0 | Rs*0

1 | segment 0 0 0 0 0 0 0 0

offset

14

17

21

24

Example: In nonsegmented mode, if register R12 (a stack pointer) contains %1002, the word at
location %1000 contains %0055, and register R3 contains % 0022, the instruction

PUSH @R12, R3
will leave the value %0022 in location %1000 and the value % 1000 in R12. In
segmented mode, a register pair must be used as the stack pointer instead of R12.

Note 1: Word register is used in nonsegmented mode, register pair in segmented mode.

115

RES
Reset Bit

RES dst(src
RESB

dst: R, IR, DA, X
src: IM
or
dst: R
src: R

Operation: dst(src) 0

This instruction clears the specified bit within the destination operand without
affecting any other bits in the destination. The source (the bit number) can be
specified as either an immediate value (Static), or as a word register which contains
the value (Dynamic). In the second case, the destination operand must be a register,
and the source operand must be RO through R7 for RESB, or RO through R15 for
RES. The bit number is a value from 0 to 7 for RESB, or 0 to 15 for RES, with 0
indicating the least significant bit.
Only the lower four bits of the source operand are used to specify the bit number for
RES, while only the lower three bits of the source operand are used with RESB.
When the source operand is an immediate value, the "src field" in the instruction
format encoding contains the bit number in the lowest four bits for RES, or the
lowest three bits for RESB.

Flags: No flags affected

Reset Bit Static

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R: RES Rd, Jb
RESB Rbd, #b 1 0 1 0 0 0 1 W Rd

IR: RES @Rdi, #b
RESB @Rdi, #b 00 1 0 0 0 1 W Rd*0

DA: RES address, #b
RESB address, #b 01 |l 0 0 0 11W | 0 0 0 0 | b

address

X: RES addr(Rd), #b
RESB addr(Rd), #b 0 111 0 0 0 11 w| Rd*0 | b

address

4 I|l 0 1 oooi|w Rd | b |

11 !I 0 0 11 000 i|w Rd*0 | b |

13 s s
0 1 |i oooi|w 0 0 0 0 b

0 1 segment offset

0 1 11 oooi|w 0 0 0 0 | b

SL 1 segment 0 0 0 0 0 0 0 0

offset

14 SS
0 1 11 oooi|w Rd*0 | b

0 1 segment offset

0 1 |i oooi|w Rd*0 | b

SL 1 segment 0 0 0 0 0 0 0 0

offset

4

11

14

16

14

17

116

Reset Bit Dynamic

RES
Reset Bit

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R: RES Rd, Rs
RESB Rbd, Rs

0 0 11 000 i|w 0000 Rs

0 0 0 0 Rd 0000 0000
0 011 000 i|w 0 0 0 0 Rs

0 0 0 0 | Rd 0 0 0 0 0 0 0 0

Example: If register RL3 contains %B2 (10110010), the instruction
RESB RL3, #1

will leave the value %B0 (10110000) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

117

RESFLG
Reset Flag

RESFLG Hag flag: C, Z, S, P, V '

Operation: FLAGS (4:7) FLAGS (4:7) AND NOT instruction (4:7)

Any combination of the C, Z, S, P or V flags are cleared to zero if the corresponding
bits in the instruction are one. If the bit iri the instruction corresponding to a flag is
zero, the flag will not be affected. All other bits in the FLAGS register are
unaffected. Note that the P and V flags are represented by the same bit.
There may be one, two, three, or four operands in the assembly language statement,
in any order.

Flags: C: Cleared if specified, unaffected otherwise
Z: Cleared if specified, unaffected otherwise
S: Cleared if specified, unaffected otherwise
P/V: Cleared if specified, unaffected otherwise
D: Unaffected
H: Unaffected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

RESFLG flags 7 7|l o| 0 01 1 01 CZSP/v| 00 1 1 I |l o| 001 1 01 |c z s p /v | 0 01 1 I

Example: If the C, S, and V flags are set (1) and the Z flag is clear (0), the statement
RESFLG C, V

will leave the S flag set (1), and the C, Z, and V flags cleared (0).

118

RET
Return

HETcc

Operation: Nonsegmented
if cc is true then
PC @SP
SP SP + 2

Segmented
if cc is true then
PC @SP
SP SP + 4

This instruction is used to return to a previously executed procedure at the end of a
procedure entered by a CALL or CALR instruction. If the condition specified by
"cc" is satisfied by the flags in the FCW, then the contents of the location addressed
by the processor stack pointer are popped into the program counter (PC). The next
instruction executed is that addressed by the new contents of the PC.'.
See list of condition codes. The stack pointer used is R15 in nonsegmented
mode, or RR14 in segmented mode. If the condition is not satisfied, then the instruc
tion following the RET instruction is executed. If no condition is specified, the return
is taken regardless of the flag settings.

Flags: No flags affected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles1 Instruction Format Cycles1

RET cc 10/7 13/7|l o| 01 1 1 1 0 | 0000 I cc | |i o| 0 1 1 1 1 0 | 0000 I cc I

Example: In nonsegmented mode, if the program counter contains %2550, the stack pointer
(R15) contains %3000, location %3000 contains %1004, and the Z flag is clear, then
the instruction

RET NZ
will leave the value %3002 in the stack pointer and the program counter will contain
%1004 (the address of the next instruction to be executed).

Note 1: The two values correspond to return taken and return not taken.

119

RL
Rotate Left

RL dst, src dst: R
RLB src: IM

Operation: Do src times: (src = 1 or 2)
tmp dst
c tmp (msb)
dst(O) • * - tmp (msb)
dst (n + 1) <*-'tmp (n) (for n = 0 to msb - 1)

Flags:

Word:

o

The contents of the destination operand are rotated left one bit position if the source
operand is 1 , or two bit positions if the source operand is 2. The most significant bit
(msb) of the destination operand is moved to the bit 0 position and also replaces the
C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax^

Nonsegmented Mode Segmented Mode

Instruction Format2 Cycles3 Instruction Format2 Cycles3

R: RL Rd, #n
RLB Rbd, #n | l o | l 1 0 0 l | w | Rd |oo|s|o| 6/7 | l o | l 1 00 l|w| Rd |oo|s|o| 6/7

Example: If register RH5 contains 0/o88 (10001000), the statement
RLB RH5

will leave the value %11 (00010001) in RH5 and the Carry flag will be set to one.

Note 1: n = source operand.
Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

120

RLC
Rotate Left through Carry

RLC dst: R
RLCB src: IM

Operation: Do src times: (src = 1 or 2)
tmp ■+- c

c ■ *- dst (msb)
dst (n + 1) «<- dst (n) (for n = msb - 1 to 0)
dst (0) ■*- tmp

Word:
0 □

Byte:
o

The contents of the destination operand with the C flag are rotated left one bit posi
tion if the source operand is 1, or two bit positions if the source operand is 2. The
most significant bit (msb) of the destination operand replaces the C flag and the
previous value of the C flag is moved to the bit 0 position of the destination during
each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

Flags: C: Set if the last bit rotated from the most significant bit position was 1; cleared
otherwise

Z: Set. if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax l

Nonsegmented Mode Segmented Mode

Instruction Format2 Cycles3 Instruction Format? Cycles3

R: RLC Rd, #n
RLCB Rbd, #n | l o | l 1 0 0 l | w | Rd |i o |s |o | 6/7 | l 0 1 1 0 0 1 W Rd |i o |s |o | 6/7

Example: If the Carry flag is clear (= 0) and register R0 contains %800F (1000000000001111),
the statement

RLC R0,#2
will leave the value %003D (0000000000111101) in R0 and clear the Carry flag.

Note 1: n = source operand.
Note 2: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 3: The given execution times are for rotation by 1 and 2 bits respectively.

121

RLDB
Rotate Left Digit

RLDB link, src src: R
link: R

Operation: tmp (0:3) ■«- link (0:3)
link (0:3) src (4:7)
src (4:7) src (0:3)
src (0:3) tmp (0:3)

{. 7__________ 4 3 I 0 7__________ 4 3 y 0

link I- I I I I

, The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the left by one BCD digit
(four bits). The lower digit of the source is moved to the upper digit of the source;
the upper digit of the source is moved to the lower digit of the link, and the lower
digit of the link is moved to the lower digit of the source. The upper digit of the link
is unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift
to the left a string of BCD digits, thus multiplying, it by a power of ten. The link
serves to transfer,digits between successive bytes of the string. This is analogous to
the use of the Carry flag in multiple precision shifting using the RLC instruction.
The same byte register must not be used as both the source and the link.

Flags: C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: RLDB Rbl, Rbs 9 9|l 0| 1 1 1 1 1 0 | Rbs | Rbl | |l 0| 1 1 1 1 1 0 | Rbs | Rbl |

122

RLDB
Rotate Left Digit

Example: If location 100 contains the BCD digits 0,1 (00000001), location 101 contains 2,3
(00100011), and location 102 contains 4,5 (01000101)

ioo | ° H ioi h h l 102 h 151

the sequence of statements

LD R3,#3 Jset loop counter for 3 bytes!
!(6 digits)!

LD R2,#102 !set pointer to low-order digits!
CLRB RH1 ! zero-fill low-order digit!

LDB RL1,@R2 !get next two digits!
RLDB RH1,RL1 !shift digits left one position!
LDB @R2,RL1 {replace shifted digits!
DEC R2 ladvance pointer!
DJNZ R3, LOOP ! repeat until counter is zero!

LOOP:

will leave the digits 1,2 (00010010) in location 100, the digits 3,4 (00110100) in loca
tion 101, and the digits 5,0 (01010000) in location 102.

100 101 102 EH
In segmented mode, R2 would be replaced by a register pair.

123

RR
Rotate Right

RR dst, src dst: R
RRB src: IM

Operation:

Flags:

Do src times: (src = 1 or 2)
tmp **- dst
c ■ + - tmp (0)
dot (msb) tmp (0)
dst (n - 1) *«- tmp (n) (for n = 1 to msb)

The contents of the destination operand are rotated right one bit position if the
source operand is 1, or two bit positions if the source operand is 2. The least signifi
cant bit of the destination operand is moved to the most significant bit (msb) and
also, replaces the C flag.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

C: Set if the last bit rotated from the least significant position was 1 ; cleared
otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format 1 Cycles2 Instruction Format 1 Cycles2

R: RR Rd, #n
RRB Rbd, #n

|l()|l1 0 0 l|w| Rd |oi|s|o| 6/7 |lo|l100l|w| Rd |oi|s|o| 6/7

Example: If register RL6 contains %31 (00110001), the statement
RRB RL6

will leave the value %98 (10011000) in RL6 and the Carry flag will be set to one.

Note 1: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits.
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

124

RRC
Rotate Right through Carry

RRC dst, src dst: R
RRCB src: IM

Operation: Do src times: (src = 1 or 2)
tmp * * - c
c •+ - dst (0)
dst (n) dst (n + 1) (for n = 0 to msb - 1)
dst (msb) tmp

The contents of the destination operand with the C flag are rotated one bit position if
the source operand is 1, or two bit positions if the source operand is 2. The least
significant bit of the destination operand replaces the C flag and the previous value
of the C flag is moved to the most significant bit (msb) position of the destination
during each rotation.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

Flags: C: Set if the last bit rotated from the least significant bit position was 1; cleared
otherwise * .

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during rotation; cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format1 Cycles2 Instruction Format1 Cycles2

RRC Rd, in
RRCB Rbd, in 11 0 11 1 0 0 1 1 w | Rd |n|s|o| 6/7 |lo|-|1 0 0 l|w| Rd |n|s|o| 6/7

Example: If the Carry flag is clear (= 0) and the register R0 contains %00DD
(0000000011011101), the statement

RRC R0,#2
will ldave the value %8037 (10000000110111) in R0 and clear the Carry flag.

Note 1: s = 0 for rotation by 1 bit; s = 1 for rotation by 2 bits
Note 2: The given execution times are for rotation by 1 and 2 bits respectively.

125

RRDB
Rotate Right Digit

RRDB link, src src: R
link: R

Operation: tmp (0:3) link (0:3)
link (0:3) *«- src (0:3) *
src (0:3) src (4:7)
src (4:7) tmp (0:3)

7 4 3 | 0 7 f~4 3 0

link I I I I |

The low digit of the link byte register is logically concatenated to the source byte
register. The resulting three-digit quantity is rotated to the right by one BCD digit
(four bits).
The lower digit of the source is moved to the lower digit of the link; the upper digit
of the source is moved to the lower digit of the source and the lower digit of the link
is moved to the upper digit of the source.
The upper digit of the link is unaffected. In multiple-digit BCD arithmetic, this
instruction can be used to shift to the right a string of BCD digits, thus dividing it by
a power of ten. The link serves to transfer digits between successive bytes of the
string. This is analogous to the use of the carry flag in multiple precision shifting

‘ using the RRC instruction.
The same byte register must not be used as both the source and the link.

Flags: C: Unaffected
Z: Set if the link is zero after the operation; cleared otherwise
S: Undefined
V: Unaffected
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: RRDB Rbl, Rbs 9 9|l o| 1 1 1 1 0 0 I Rbs | Rbl | |l o| 1 1 1 1 00 | Rbs | Rbl |

126

RRDB
Rotate Right Digit

Example: If location 100 contains the BCD digits 1(2 (00010010), location 101 contains 3,4
(00110100), and location 102 contains 5,6 (01010110)

101 EH 102 [0
the sequence of statements

LOOP:

LD R3,#3 !set loop counter for 3 bytes (6
digits)!

LD R2,100 !set pointer to high-order digits!
CLRB RH1 !zero-fill high-order digit!

LDB RL1,@R2 !get next two digits!
RRDB RH1,RL1 !shift digits right one position!
LDB @R2,RL1 ! replace shifted digits!
INC R2 !advance pointer!
DJNZ R3,LOOP !repeat until counter is zero!

will leave the digits 0,1 (00000001) in location 100, the digits 2,3 (00100011) in loca
tion 101, and the digits 4,5 (01000101) in location 102. RH1 will contain 6, the
remainder from dividing the string by 10.

100
EH

101 102
EH

In segmented mode, R2 would be replaced by a register pair.

127

SBC
Subtract with Carry

SBC dst, src dst: R
SBCB src: R

Operation: dst dst - src - C

The source operand, along with the setting of the carry flag, is subtracted from the
destination operand and the result is stored in the destination. The contents of the
source are not affected. Subtraction is performed by adding the two's complement of
the source operand to the destination operand. In multiple precision arithmetic, this
instruction permits the carry ("borrow") from the subtraction of low-order operands

. to be subtracted from the subtraction of high-order operands.

Flags: C: Cleared if there is a carry from the most significant bit of the result; set
otherwise, indicating a "borrow" .

' Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: SBC—unaffected; SBCB—set
H: SBC—unaffected; SBCB—cleared if there is a carry from the most significant bit

of the low-order four bits of the result; set otherwise, indicating a "borrow"

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: SBC Rd, Rs
SBCB Rbd, Rbs |lo|l101l|w| Rs | Rd | 5 |lo|l101l|w| Rs | Rd | 5

Example: Long subtraction may be done with the following instruction seguence, assuming RO,
R1 contain one operand and R2, R3 contain the other operand:

SUB R1,R3 {subtract low-order words!
SBC R0,R2 Isubtract carry and high-order words!

If RO contains %0038, R1 contains %4000, R2 contains %000A and R3 contains
%F000, then the above two instructions leave the value %002D in RO and %5000
in Rl.

128

Privileged sc
System Call

Operation:

Flags:

SC src src: IM

Nonsegmented
SP SP - 4
@ SP~- PS
SP SP - 2
@SP instruction
PS •*- System Call PS

Segmented
SP SP - 6
@SP — PS
SP SP - 2
@SP instruction
PS <«- System Call PS

This instruction is used for controlled access to operating system software in a man
ner similar to a trap or interrupt. The current program status (PS) is pushed on the
system processor stack, and then the instruction itself, which includes the source
operand (an 8-bit value) is pushed. The PS includes the Flag and Control Word
(FCW), and the updated program counter (PC). (The updated program counter
value used is the address of the first instruction byte following the SC instruction.)
The system stack pointer is always used (R15 in nonsegmented mode, or RR14 in
segmented mode), regardless of whether system or normal mode is in effect. The
new PS is then loaded from the Program Status block associated with the System
Call trap (see section 6.2.4), and control is passed to the procedure whose address is
the program counter value contained in the new PS. This procedure may inspect the
source operand on the top of'the stack to determine the particular software service
desired.
The following figure illustrates the format of the saved program status in the system
stack:

NONSEGMENTED SEGMENTED

STACK POINTER
AFTER TRAP
OR INTERRUPT

STACK POINTER
BEFORE TRAP
OR INTERRUPT

IDENTIFIER

FCW

PC

-* -1 WORD-*-

LOW
ADDRESS

HIGH
ADDRESS

LOW
ADDRESS

HIGH
ADDRESS

The Z8001 version always executes the segmented mode of the System Call instruc
tion, regardless of the current mode, and sets the Segmentation Mode bit (SEG) to
segmented mode (= 1) at the start of the SC instruction execution. Both the Z8001
and Z8002 versions set the System/Normal Mode bit (S/N) to system mode (= 1) at
the start of the SC instruction execution. The status pins reflect the setting of these
control bits during the execution of the SC instruction. However, the setting of SEG
and S/N does not affect the value of these bits in the old FCW pushed onto the stack.
The new value of the FCW is not effective until the next instruction, so that the status
pins will not be affected by the new control bits until after the SC instruction execu
tion is completed.
The "src field" in the instruction format encoding contains the source operand. The
"src field" values range from 0 to 255 corresponding to the source values 0 to 255.

No flags affected
Flags loaded from Program Status Area

129

sc
System Call

Privileged

Source
Addressing

Mode

Nonsegmented Mode Segmented Mode

Syntax Instruction Format Cycles Instruction Format Cycles

IM: SC #src 33 39| 0 1 1 1 1 1 1 1 | src | | 0 1 1 1 1 1 1 1 | src |

Example: In the nonsegmented Z8002, if the contents of the program counter are %1000, the
contents of the system stack pointer (R15) are %3006, and the Program Counter and
FCW values associated with the System Call trap in the Program Status Area are
%2000 and °/olOOO, respectively, the instruction

SC #3 !system call, request code = 3!
causes the system stack pointer to be decremented to %3000. Location %3000 con
tains %7F03 (the SC instruction). Location %3002 contains the old FCW, and loca
tion %3004 contains %1002 (the address of the instruction following the SC instruc
tion). System mode is in effect, and the Program Counter contains the value %2000,
which is the start of a System Call trap handler, and the FCW contains %1000.

130

SDA
Shift Dynamic Arithmetic

Operation:

Flags:

SDA dst, src dst: R
SDAB src: R
SDAL

Right (src negative)
Do src times: .

c dst (0)
dst (n) * - dst (n + 1) (for n = 0 to msb - 1)
dst (msb) dst (msb) .

Left (src positive)
Do src times:

c dst (msb)
dst (n + 1) *•- dst (n) (for n
dst (0) 0

= msb - 1 to 0)

Right
7 0 7

Left
0

Byte: H | ~ H r a EH h — 0
L _ l

15 0 15 0
Word: rH I ____ H U EH i — 0

L _ j
15 0 15 0

Lona: rH I Rn h EH Rn --
L U

I 15 0
l !5

0
U| Rn + 1 __HU H ___ Rn + 1 ---0

n = 0 ,2 ,414 n = 0,2,4 ,...,14

The destination operand is shifted arithmetically left or right by the number of bit
positions specified by the contents of the source operand, a word register.
The shift count ranges from -8 to +8 for SDAB, from -16 to + 16 for SDA and from
-32 to +32 for SDAL. If the value is outside the specified range, the operation is
undefined- The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The sign bit is replicated in shifts to the right, and the C
flag is loaded from bit 0 of the destination. The least significant bit is filled with 0 in
shifts to the left, and the C flag is loaded from the most significant bit (msb) of the
destination. The setting of the carry bit is undefined for zero shift.

C: Set if the last bit shifted from the destination was 1 , undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
D: Unaffected
H: Unaffected

13!

SDA
Shift Dynamic Arithmetic

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles1

Segmented Mode

Instruction Format Cycles1

R: SDA Rd, Rs

SDAB Rbd, Rs

SDAL RRd, Rs

t 0 | 1 1 0 0 1 1 Rd | 1 0 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 0 Rd 10 11

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 1 Rd | 1 1 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

15 + 3n

15 + 3n

15 + 3n

1 0 | 1 1 0 0 1 1 Rd | 1 0 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 0 Rd | 1 0 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 1 Rd | 1 1 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

15 + 3n

15 + 3n

15 + 3n

Example: If register R5 contains %C705 (1100011100000101) and register R1 contains - 2
(%FFFE or 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0), the statement

SDA R5,R1 •’
performs an arithmetic right shift of two bit positions, leaves the value %F1C1
(1111000111000001) in R5, and clears the Carry flag.

Note 1: n = num ber of bit positions; the execu tion time for n = 0 is the sam e as for n = 1.

132

SDL
Shift Dynamic Logical

Operation:

Flags:

SDL dst, src dst: R
SDLB src: R
SDLL

Right
Do src times

c dst (0)
dst (n) dst (n + 1) (for n = 0 to msb - 1)
dst (msb) «*- 0

Left
Do src times

c ◄- dst (msb)
dst (n + 1) -4- dst (n) (for n = msb - 1 to 0)
dst (0) -

Byte:

Right

I K FI EM
Left

M
15_____________________________________ 0 ____ ___ 15_____________________________________ 0

Word: o — ► ! Mcl lcM M
15 0 15 0

Long: o — ► ! Rn h EM__ Rn ___H

1 !5 0 I 15 0

H___ Rn + 1 Km m Rn + 1 ___M°
n = 0,2,4......14 n = 0,2,4......14

The destination operand is shifted logically left or right by the number of bit posi
tions specified by the contents of the source operand, a word register. The shift
count ranges from -8 to +8 for SDL, from -16 to + 16 for SDLB and from -32 to
+ 32 for SDLL. If the value is outside the specified range, the operation is
undefined. The source operand is represented as a 16-bit two's complement value.
Positive values specify a left shift, while negative values specify a right shift. A shift
of zero positions does not affect the destination; however, the flags are set according
to the destination value. The most significant bit (msb) is filled with 0 in shifts to the
right, and the C flag is loaded from bit 0 of the destination. The least significant bit
is filled with 0 in shifts to the left, and the C flag is loaded from the most significant
bit of the-destination. The setting of the carry bit is undefined for zero shift.

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

133

SDL
Shift Dynamic Logical

Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: SDL Rd, Rs

SDLB Rbd, Rs

SDLL RRd, Rs

1 0 | 1 1 0 0 1 1 Rd | 00 11

0 0 0 0 | Rs 00 0 0 0 0 0 0

1 0 | 1 1 0 0 1 0 Rd | 0 0 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 1 Rd | 0 1 1 1

0 0 0 0 | Rs 0 0 0 0 0 0 0 0

15 + 3n

15 + 3n

15 + 3n

1 0 | 1 1 0 0 1 1 Rd | 0 0 1 1

0 0 00 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 0 Rd | 0 0 1 1

0 0 00 | Rs 0 0 0 0 0 0 0 0

1 0 | 1 1 0 0 1 1 Rd | 0 1 1 1

0 0 0 0 | Rs 0 0 0 0 o o o o

Example: If register RL5 contains %B3 (10110011) and register R1 contains 4
(0000000000000100), the statement

SDLB RL5,R1
performs a logical left shift of four bit positions, leaves the value %30 (00110000) in
RL5, and sets the Carry flag.

Noted: n = number of bit positions; the execution time for n = 0 is the same as for n = 1.

134

SET
Set Bit

SET dst, src dst: R, IR, DA, X
SETB src: IM

or
dst: R
src: R

Operation: dst(src) 1

Sets the specified bit within the destination operand without affecting any other bits
in the destination. The source (the bit number) can be specified as either an immedi
ate value (Static), or as a word register which contains the value (Dynamic). In the
second case, the destination operand must be a register, and the source operand
must be RO through R7 for SETB, or RO through R15 for SET. The bit number is a
value from 0 to 7 for SETB or 0 to 15 for SET, with 0 indicating the least significant
bit.
Only the lower four bits of the source operand are used to specify the bit number for
SET, while only the lower/three bits of the source operand are used with SETB.
When the source operand is an immediate value, the "src field" in the instruction
format encoding contains the bit number in the lowest four bits for SET, or the
lowest three bits for SETB.

Flags: No flags affected

Set Bit Static
Destination
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format

R: SET Rd, #b
SETB Rbd, §b

IR: SET @Rdi, #b
SETB @Rdi, §b

DA: SET address, #b
SETB address, #b

X: SET addr(Rd), #b
SETB addr(Rd), Jb

N o ooo w Rd |

loo ooo MRd*0 |

0 1 11 0 0 1 o|w| 0 0 0 0 | b
address

0 1 |l 001 o|W| Rd*0 | b
address

4

11

13

14

11 0 |l 001 01W| Rd | b

Cycles

4

11

14

16

14

17

135

SET
Set Bit

Set Bit Dynamic
Nonsegmented Mode Segmented Mode

Addressing
Mode

Assembler Language
Syntax Instruction Format Cycles Instruction Format Cycles

R: SET Rd, Rs
SETB Rbd, Rs

oo|i 0 0 1 o | w 0 00 0 | Rs

0 0 0 0 | Rd 0 0 0 0 0 0 0 0

0 0 |l 0 0 1 o | w 0 0 0 0 | Rs

0 0 0 0 | Rd 0 0 0 0 0 0 0 0

Example: If register RL3 contains %B2 (10110010) and register R2 contains the value 6, the
instruction

SETB RL3, R2
will leave the value %F2 (111 10010) in RL3.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

136

SETFLG
Set Flag

SETFLG flag Flag: C, Z, S, P, V

Operation: FLAGS (4:7) FLAGS (4:7) OR instruction (4:7)

Any combination of the C, Z, S, P or V flags are set to one if the corresponding bits
in the instruction are one. If the bit in the instruction corresponding to a flag is zero,
the flag will not be affected. All other bits in the FLAGS register are unaffected.
Note that the P and V flags are represented by the same bit.
There may be one, two, three, or four operands in the assembly language statement,
in any order.

Flags: C: Set if specified; unaffected otherwise
Z: Set if specified; unaffected otherwise
S: Set if specified; unaffected otherwise
P/V: Set if specified; unaffected otherwise
D: Unaffected
H: Unaffected

Assembler Language
Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

SETFLG flags 7 7I 1 0 0 0 1 1 01 |c z s p /v | 0 0 0 1 | I 1 0 0 0 1 1 01 |c z s p /v | 0 0 0 1 |

Example: If the C, Z, and S flags are all clear (0), and the P flag is set (1), the statement
SETFLG C

will leave the C and P flags set (1), and the Z and S flags cleared (0).

137

SLA
Shift Left Arithmetic

Operation:

Flags:

SLA dst, src dst: R
SLAB src: IM
SLAL

Do src times:
c dst (msb)
dst (n + 1) •*- dst (n) (for n = msb - 1 to 0)
dst (0) ^ 0

7____________ 0
Byte: |T|— |

15

___ __ ___ l— 0

0
Word: ("c"|̂ —| I— '

15 0
Loner: F T *H _________ ™ ___________________I— l

I « 0
1--- 1 Rn + 1 -- (

n = 0, 2, 4 14

The destination operand is shifted arithmetically left the number of bit positions
specified by the source operand. For SLAB, the source is in the range 0 to 8; for
SLA, the source is in the range 0 to 16; for SLAL, the source is in the range 0 to 32.
A shift of zero positions does not affect the destination; however, the flags are set
according to the destination value. The least significant bit of the destination is filled
with 0, and the C flag is loaded from the sign bit of the destination. The operation is
the equivalent of a multiplication of the destination by a power of two with overflow
indication.
The src field is encoded in the instruction format as the 8- or 16-bit two's comple
ment positive value of the source operand. For each operand size, the operation is
undefined if the source op* and is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

C: Set if the last bit shifted from the destination was 1, undefined for zero shift;
cleared otherwise

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the sign of the destination changed

during shifting; cleared otherwise
D: Unaffected
H: Unaffected

138

SLA
Shift Left Arithmetic

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles1

Segmented Mode

Instruction Format Cycles1

SLA Rd, §b

SLAB Rbd, #b

SLAL RRd, #b

10110011 Rd 1001

1 o] 1 1 0 0 1 0 Rd | 1 0 0 1

0 b

1 0 | 1 1 0 0 1 1 | Rd I 1 1 01

b

13 + 3b

13 + 3b

13 + 3b

10110011 Rd 1001

1o| 110010 Rd 1001

0 b

10110011 Rd 1101

13 + 3b

13 + 3b

13 + 3b

Example: If register pair RR2 contains %1234ABCD, the statement
SLAL RR2,#8 .

will leave the value %34ABCD00 in RR2 and clear the Carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1.

139

SLL
Shift Left Logical

Operation:

Flags:

SLL dst, src . dst: R
SLB src: IM
SLLL

Do src times:
c dst (msb)
dst (n- + 1) • * - dst (n) (for n = msb - 1 to 0)
dst (0) 0

7____________________________ 0

Byte: FH " — 1
____ 15___ 0

Word: f h ~ n »

___ 15_____________ .___ 0

Long: F I — I Rn h -|

15___0

------1 Rn + 1 ~ j-<-----0

n =. 0, 2, 4, ..., 14

The destination operand is shifted logically left by the number of bit positions
specified by the source operand. For SLLB, the source is in the range 0 to 8; for
SLL, the source is in the range 0 to 16; for SLLL, the source is in, the range 0 to 32.
A shift of zero positions does not affect the destination; however, the flags are set
according to the destination value. The setting of the carry bit is undefined for zero
shift. The least significant bit of the destination is filled with 0, and the C flag is
loaded from the most significant bit (msb) of the destination. This instruction per
forms an unsigned multiplication of the destination by a power of two.
The src field is encoded in the instruction format as the 8- or 16-bit positive value of
the source operand. For each operand size, the operation is undefined if the source
operand is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the ^alue 1 .

C: Set if the last bit shifted from the destination was 1 , undefined for zero shift;
cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

140

SLL
Shift Left Logical

Destination
Addressing Assembler Language

Mode . Syntax

R: SLL Rd, §b

SLLB Rbd, #b

SLLL RRd, #b

Nonsegmented Mode

Instruction Format Cycles1

13 + 3b

13 + 3b

13 + 3b

Segmented Mode

Instruction Format Cycles 1

13 + 3b

13 + 3 b

13 + 3b

Example: If register R3 contains %4321 (0100001100100001), the statement
SLL R3,#l

'Will leave the value %8642 (1000011001000010) in R3 and clear the carry flag.

Note 1: b = number of bit positions; the execution time for b =0 is the same as for b = 1.

141

SRA
Shift Right Arithmetic

Operation:

Flags:

SRA dst, src dst: R
SRAB src: IM
SRAL

Do src times:
c ■ *- dst (0)
dst (n) ■ *- dst (n + l)(for n = 0 to msb - 1)
dst (msb) dst (msb)

7 o

Byte:

15

H 7!
0

Word: (—►! | _________ I—- □
L _ i

15 0
Long: r~H I Rn I I

. L 3 :
0

H Rn +1 _ _ H jD
n = 0, 2, 4, ..., 14

The destination operand is shifted arithmetically right by the number of bit positions
specified by the source operands. For SRAB, the source is in the range 0 to 8; for
SRA, the source is in the range 0 to 16; for SRAL, the source is in the range 0 to 32.
A right shift of zero for SRA is not possible. The most significant bit (msb) of the
destination is replicated, and the C flag is loaded from bit 0 of the destination, this
instruction performs a signed division of the destination by a power of two.
The src field is encoded in the instruction format as the 8- or 16-bit two's comple
ment negative of the source operand. For each operand size, the operation is
undefined if the source operand is not in the specified range.
The source operand may be omitted from the assembly language statement and thus
defaults to the value 1 .

C: Set if the last bit shifted from the destination was 1 ; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise
V: Cleared
D: Unaffected
H: Unaffected

SRA
Shift Right Arithmetic

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles1

Segmented Mode

Instruction Format Cycles1

R: SRA Rd, ifb

SRAB Rbd, #b

SRAL RRd, #b

1 0 | 1 1 0 0 1 1 | Rd | 1 00 1

- b

1 0 | 1 1 0 0 1 0 Rd | 1 0 0 1

0 - b

1 0 | 1 1 0 0 1 1 | Rd I 1 1.0 1

- b

13 + 3b

13 + 3b

13 + 3b

1 0 1 1 1 0 0 1 1 I Rd | 1 001

- b

1 0 | 1 1 0 0 1 0 Rd | 1 0 0 1

0 - b

1 0 I 1 1 0 0 1 1 | Rd | 1 1 0 1

- b

13 + 3b

13 + 3b

13 + 3b

Example: If register RH6 contains %3B (00111011), the statement
SRAB RH6,#2

will leave the value %0E (00001110) in RH6 and set the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1.

143

SRL
Shift Right Logical

Operation:

Flags:

SRL dst, src dst: R
SRLB ' src: IM
SRLL

Do src times:
c ■+ - dst (0)
dst (n) dst (n + l)(for n = 0 to msb - 1)
dst (msb) 0

7 o

Byte:

15

H ------- HE
0

Word: o—*-| HE
15 0

Lona: °“H Rn H
| 15 ... 0
H____ Rn + 1 HE

n = 0, 2, 4....... 14

The destination operand is shifted logically right by the number of bit positions
specified by the source operand. For SRLB, the source operand is in the range 0 to
8; for SRL, the source is in the range 0 to 16; for SRLL, the source is in the range 0
to 32. A right shift of zero for SRL is not possible. The most significant bit (msb) of
the destination is filled with 0, and the C flag is loaded from bit 0 of the destination.
This instruction performs an unsigned division of the destination by a power of two.
The src field is encoded in the instruction format as the 8- or 16-bit negative value of
the source operand in two's complement rotation. For each operand size, the opera
tion is undefined if the source operand is not in the range specified above.
The source operand may be omitted from the assembly language statement and thus
defaults to the value of 1 .

C: Set if the last bit shifted from the destination was 1; cleared otherwise
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is one; cleared otherwise
V: Undefined
D: Unaffected
H: Unaffected

144

SRL
Shift Right Logical

Destination
Addressing Assembler Language

Mode Syntax

R: SRL Rd, #b

SRLB Rbd, #b

SRLL RRd, #b

Nonsegmented Mode

Instruction Format

1 0 | 1 1 0 0 1 1 | Rd I 0001

-b

10 110010 Rd | 0 0 0 1

0 -b

1 o| 1 1 00 1 1. | Rd | 0 1 0 1

-b

Cycles1

13 + 3b

13 + 3b

13 + 3b

Segmented Mode

Instruction Format Cycles1

13 + 3b

13 + 3b

13 + 3b

Example: If register RO contains %I111 (0001000100010001), the statement
SRL R0,#6

will leave the value %0044 (0000000001000100) in R0 and clear the carry flag.

Note 1: b = number of bit positions; the execution time for b = 0 is the same as for b = 1.

145

SUB
Subtract

SUB dst, src dst: R
SUBB src: R; IM, IR, DA, X
SUBL

Operation: dst dst - src

The source operand is subtracted from the destination operand and the result is
stored in the destination. The contents of the source are not affected. Subtraction is
performed by adding the two's complement of the source operand to the destination
operand.

Flags: C: Cleared if there is a carry from the most significant bit; set otherwise, indicating
a "borrow"

Z: Set if the result is zero; cleared otherwise
S: Set if the result is negative; cleared otherwise '
V: Set if arithmetic overflow occurs, that is, if the operands were of opposite signs

and the sign of the result is the same as the sign of the source; cleared otherwise
D: SUB, SUBL—unaffected; SUBB—set
H: SUB, SUBL—unaffected; SUBB—cleared if there is a carry from the most

significant bit of the low-order four bits of the result; set otherwise, indicating a
"borrow"

Source
Addressing Assembler Language

Mode Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: SUB Rd, Rs
SUBB Rbd, Rbs

SUBL RRd, RRs

IM: SUB Rd, #data

SUBB Rbd, #data

SUBL RRd, #data

4 |lo|oOOQl|w| Rs | Rd | 4

8 11 0 | 0 10 0 10 | RRs | RRd | 8

7

7

14

0 0 | 00001 o | oooo] r7

data

0 01 00001 1 0 0 0 0 | Rd

data data

Qo| 010010 | OOQO | Rd

31_____data (high)_____ i6

15 data (low) o

7

7

14

IR: SUB Rd, @Rsi
SUBB Rbd, @Rsi
SUBL RRd, @Rsi

00

J5
_

oooo

Rs*0 | Rd |

10 0 I 0 1 0 0 1 o | Rs*0 | Rd |

loo |o 0 0 0 11 w| Rs*0 | Rd |

loo I 010010 | Rs*0 | Rd |

146

SUB
Subtract

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

DA:

X:

SUB Rd, address
SUBB Rbd, address

SUBL RRd, address

SUB Rd, addr(Rs)
SUBB Rbd, addr(Rs)

SUBL RRD, addr(Rs)

01 0 0 0 0 1 W 0 0 0 0 Rd

0 1 | 0 1 0 0 1 0 | 0 0 0 0 | Rd

address

0 l|o0 0 0 l|w| Rs * 0 | Rd

address

0 11 0 1 00 1 0 | Rs*0 | Rd

address

15

10

16

SS

SL

SS

SL

oi|ooooi|w 0 0 0 0 | Rd

0 1 segment offset

SS

SL

SS

SL

oi|ooooi|w 0 0 0 0 | Rd

1 segment 0 0 0 0 0 0 0 0

offset

01 | 0 1 0 0 1 0 0 0 0 0 | Rd

0 segment offset •

0 1 1 0 1 00 1 0 0 0 0 0 | Rd

1 | segment 0 0 0 0 0 0 0 0

offset

01 |0 0 0 0 11 w Rs*0 | Rd

0 segment offset

0 1 10 0 0 0 11 W Rs*0 | Rd

1 I segment 0 0 0 0 0 0 0 0

offset

01 | 01 001 0 Rs*0 | Rd

0 segment offset

0 11 0 10 0 10. Rs*0 | Rd

1 I segment 0 0 0 0 0 0 0 0

10

12

16

18

10

13

16

19

Example: If register RO contains %0344, the statement
SUB R0,#%AA

will leave the value %029A in RO.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

147

TCC
Test Condition Code

TCC cc, dst dst: R
TCCB

Operation: if cc is satisfied then
dst (0) 1

This instruction is used to create a Boolean data value based on the flags set by a
previous operation. The flags in the FCW are tested to see if the condition specified
by "cc" is satisfied. If the condition is satisfied, then the least significant bit of the
destination is set. If the condition is not satisfied, bit zero of the destination is not
cleared but retains its previous value. All other bits in the destination are unaffected
by this instruction.

Flags: No flags affected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode Segmented Mode

Instruction Format Cycles Instruction Format Cycles

R: TCC cc, Rd
TCCB cc, Rbd

5 5|lo|l011l|w| Rd | cc | |lo|l011l|w| Rd I cc I

Example: If register R1 contains 0, and the Z flag is set, the statement
TCC EQ,R1

will leave the value 1 in Rl.

148

TEST
Test

TEST dst
TESTB
TESTL

dst: R, IR, DA, X

Operation: dst OR 0

Flags:

The destination operand is tested (logically ORed with zero), and the Z, S and P
flags are set to reflect the attributes of the result. The flags may then be used for
logical conditional jumps. The contents of the destination are not affected.

C: Unaffected
Z: Set if the result is zero; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: TEST—unaffected; TESTL—undefined; TESTB—set if parity of the result is even;

cleared otherwise
D: Unaffected
H: Unaffected

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R:

IR:

DA:

TEST Rd
TESTB Rbd

TESTL RRd

TEST @Rdi
TESTB @Rdi

TESTL @Rdl

TEST address
TESTB address

0 0 1 1 0 W Rd

01 |o 0 1 1 01W | o o o o I 01 00

address

d o]

7

1 3

8

1 3

11

1 0 001 1 0 W Rd 0 1 0 0

1 0 0 1 1 1 0 0 Rd 1 0 0 0

0 0 0 0 1 1 0 W Rd*0 0 1 0 0

00 0 1 1 1 0 0 Rd*0 1 0 0 0

TESTL address 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0
1 6

SS

SL

SS

SL

0 1 |o 0 1 1 o|w 0 0 0 0 | 0 1 0 0

0 1 segment offset

0 1 10 0 1 1 ow 0 0 0 0 | 0 1 0 0

1 | segment 0 0 0 0 0 0 0 0

address

0 1 1 0 1 1 1 0 0 0 0 0 0 | 1 0 0 0

0 1 segment offset

0 1 [0 1 1 1 0 0 0 0 & 0 | 1 0 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

7

1 3

8

1 3

12

1 4

1 7

1 9

149

TEST
Test

Destination
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X: TEST addr(Rd)
TESTB addr(Rd) 0 1 0 0 1 1 0 W Rd*0 0 1 0 0

12

01 0 1 1 1 0 0 Rd*0 1 0 0 0
17

SS

SL

SS

SL

0 1 |o 0 1 1 o w Rd*0 | 0 1 0 0

0 1 segment offset

0 1 0 0 1 1 o|w R d * 0 | 0 1 0 0

1 | segment 0 0 0 0 0 0 0 0

offset

0 1 1 0 1 1 1 0 0 R d * 0 | 1 0 0 0

0 1 segment offset

0 11 0 1 1 1 0 0 R d * 0 | 1 0 0 0

1 1 segment 0 0 0 0 0 0 0 0

offset

12

15

17

20

Example: If register R5 contains %FFFF (1111111111111111), the statement
TEST R5

will set the S flag, clear the Z flag, and leave the other flags unaffected.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

TRDB
Translate and Decrement

TRDB dst, src, r dst: IR
src: IR

Operation: dst *+-' src[dst]
AUTODECREMENT dst by 1
r ◄- r - 1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rule for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla
tion value within the table which replaces the original contents of the location
addressed by the destination register.
The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The original contents of register RH1 are lost
and are replaced by an undefined value. R1 in nonsegmented mode, or RRO in
segmented mode, must not be used as a source or destination pointer, and R1 should
not be used as a counter. The source, destination, and counter registers must be
separate and non-overlapping registers.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur. The
source register is unchanged.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRDB @Rdi, @Rsi
1 01 1 1 1000 Rd * 0 1000

0 0 0 0 | r Rs * 0 0000

1 01 111000 Rd * 0 1000

0 0 0 0 | r Rs * 0 0000

Example: In nonsegmented mode, if register R6 contains %4001, the byte at location %4001
contains 3, register R9 contains % I000, the byte at location 0/ol003 contains °/oAA,
and register R12 contains 2, the instruction

TRDB @R6, @R9, R12
will leave the value °/oAA in location 0/o4001, the value %4000 in R6, and the value
1 in R12. R9 will not be affected. The V flag will be cleared. RH1 will be set to an
undefined value. In segmented mode, R6 and R9 would be replaced with
register pairs. .
Note 1: Word register in nonsegmented mode, register pair in segmented mode.

151

TRDRB
Translate Decrement and Repeait

TRDRB dst, src, R dst: IR
src: IR

Operation: dst •«- src [dst] .
AUTODECREMENT dst by 1
r ««- r - 1
repeat until r = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order'zeros. The sum is used as the address of an 8-bit transla
tion value within the table that replaces the original contents of the location
addressed by the destination register.
The destination register is then decremented by one, thus moving the pointer to the
previous element in the string. The word register specified by "r" (used as a
counter) is then decremented by one. The entire operation is repeated until the
result of decrementing r is zero. This instruction can translate from 1 to 65536 bytes.
The original contents of register RH1 are lost and are replaced by an undefined
value. The source register is unchanged. The source, destination, and counter
registers must be separate and non-overlapping registers.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set .
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles2 Instruction Format Cycles2

IR: TRDRB @Rbdl, @Rbsl, r 1 o| 1 1 1 0 0 0 Rd * 0 1 1 0 0

o o o o j r Rs * 0 0 0 0 0

1 o| 11 1 0 0 0 Rd * 0 1 1 00

0 0 0 0 | r Rs * 0 0 0 0 0

152

TRDRB
Translate Decrement and Repeat

Example: In nonsegmented mode, if register R6 contains 0/o4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, respectively, register R9 con
tains %1000, the translation table from location %1000 through %10FF contains 0,
1, 2, ..., %7F, 0, 1, 2, ..., %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction .

TRDRB @R6, @R9, R12
will leave the values °/oOO, %40, %00 in byte locations %4000 through %4002,
respectively. Register R6 will contain %3FFF, and R12 will contain 0. R9 will not be
affected. The V flag will be set, and the contents of RH1 will be replaced by an
undefined value. In segmented mode, R6 and R9 would be replaced by register
pairs.

BEFORE

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

153

dst: IR
src: IR

TRIB
Translate and Increment

TRIB dst, src, R

Operation: dst src[dst]
AUTOINCREMENT dst by 1 .
r r - 1

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The original con
tents of register RH1 are lost and are replaced by an.undefined value. The source
register is unchanged. The source, destination, and counter registers must be
separate and non-overlapping registers.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

TRIB @Rdi, @Rsi, r 1 0 1 1 1 1 0 0 0 Rd * 0 0 0 0 0

0 0 0 0 | r Rs * 0 0 0 0 0

1 0 1 1 1 1 0 0 0 Rd * 0 0 0 0 0

0 0 0 0 | r Rs * 0 0 0 0 0

154

Example:

TRIB
Translate and Increment

This instruction can be used in a "loop" of instructions which translate a string of
data from one code to any other desired code, but an intermediate operation on
each data element is required. The following sequence translates a string of 1000
bytes to the same string of bytes, with all ASCII "control characters" translated
to the "blank" character (value = 32). A test, however,
is made for the special character "return" (value = 13) which terminates
the loop. The translation table contains 256 bytes. The first 33 (0-32) entries all con
tain the value 32, and all other entries contain their own index in the table, counting
from zero. This example assumes nonsegmented mode. In segmented mode, R4 and
R5 would be replaced by register pairs.

LD R3, #1000 Unitialize counter!
LDA R4, STRING !load start addresses!
LDA R5, TABLE

CPB @R4, #13 !check for return character!
JR EQ, DONE !exit loop if found!
TRIB @R4, @R5, R3 {translate next byte!
JR NOV, LOOP !repeat until counter = 0!

DONE:

TABLE+
TABLE+
TABLE+

TABLE+ 32
TABLE+ 33
TABLE+ 34

TABLE+ 255 1

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 1 0 0 0 1 0

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

155

TRIRB
Translate, Increment and Repeat

TRIRB dst, src, R dst: IR
src: IR

Operation: dst src[dst]
AUTOINCREMENT dst by I
r •*- r — 1
repeat until r = 0

This instruction is used to translate a string of bytes from one code to another code.
The contents of the location addressed by the destination register (the "target byte")
are used as an index into a table of translation values whose lowest address is con
tained in the source register. The index is computed by adding the target byte to the
address contained in the source register. The addition is performed following the
rules for address arithmetic, with the target byte treated as an unsigned 8-bit value
extended with high-order zeros. The sum is used as the address of an 8-bit transla
tion value within the table which replaces the original contents of the location
addressed by the destination register. The destination register is then incremented
by one, thus moving the pointer to the next element in the string. The word register
specified by "r" (used as a counter) is then decremented by one. The entire opera
tion is repeated until the result of decrementing r is zero. This instruction can
translate from 1 to 65536 bytes. The original contents of register RH1 are lost and are
replaced by an undefined value. The source register is unaffected. The source,
destination, and counter registers must be separate and non-overlapping registers.
Because the 8-bit target byte is added to the source register to obtain the address of
a translation value, the table may contain 256 bytes. A smaller table size may be
used where it is known that not all possible 8-bit target byte values will occur.
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Undefined
S: Unaffected
V: Set
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IR: TRIRB @Rdl, @Rsi,.r 1 0 1 1 1 1 0 0 0 Rd * 0 0 1 0 0

0 0 0 0 | r Rs * 0 0 0 0 0
11 + 14n

1 0 | 1 1 1 0 0 0 Rd * 0 0 1 0 0

0 0 0 0 | r Rs * 0 0 0 0 0
11 + 14n

156

TRIRB
Translate, Increment and Repeat

Example: The following sequence of instructions can be used to translate a string of 80 bytes
from one code to another. The pointers to the string and the translation table are set,
the number of bytes to translate is set, and then the translation is accomplished.
After executing the last instruction, the V flag is set and the contents of RH1 are lost.
The example assumes nonsegmented mode. In segmented mode, R4 and R5 would
be replaced by register pairs.

LDA R4, STRING
LDA R5, TABLE
LD R3, #80
TRIRB @R4, @R5, R3

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

157

TRTDB
Translate, Test and Decrement

TRTDB srcl, src2, R src 1: IR
src 2: IR

Operation: RH1 «•- src2 [srcl]-
AUTODECREMENT srcl by 1
r ■*- r - 1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by'one, thus moving the pointer to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source, destina
tion, and counter registers must be separate and non-overlapping registers.
Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values will
occur.

Flags: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRTDB @Rsli, @Rs2],
1 0 | 1 1 1 0 0 0 Rs1 * 0 1 0 1 0

0 0 0 0 | r Rs2 * 0 0 0 0 0
25 1 0 | 1 1 1 0 0 0 R»1 * 0 1 0 1 0

0 0 0 0 | r Rs2 * 0 0 0 0 0

Example: In nonsegmented mode, if register R6 contains 0/o4001, the byte at location %4001
contains 3, register R9 contains %1000, the byte at location 0/ol003. Contains %AA,
and register R12 contains 2, the instruction

TRTDB @R6, @R9, R12
Will leave the value %AA in RH1, the value %4000 in R6, and the value 1 in R12.
Location %4001 and register R9 will not be affected. The Z and V flags will be
cleared. In segmented mode, register pairs must be used instead of R6 and R9.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

158

TRTDRB
Translate, Test, Decrement and Repeat

TRTDRB src 1 , src 2, R src 1: IR
src 2: IR

Operation: RH1 *«- src 2[srcl]
AUTODECREMENT srcl by 1
r ■*- r - 1
repeat until RH1 = 0 or r = 0

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then decremented by one, thus moving the pointer to the previous
element in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The entire operation is repeated until either the Z flag is clear,
indicating that a non-zero translation value was loaded into RH1, or until the result
of decrementing r is zero. This instruction can translate and test from 1 to
65536 bytes. The source, destination, and counter registers must be separate and
non-overlapping registers.
Target byte values which have corresponding zero translation-table entry values are
to be scanned over, while target byte values which have corresponding non-zero
translation-table entry values are to be detected. Because the 8-bit target byte is
added to the second source register to obtain the address of a translation value, the
table may contain 256 bytes. A smaller table size may be used where it is known that
not all possible 8-bit target byte values will occur.
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IR: TRTDRB@Rsl1 ,@Rs21,r
1 0 | 1 1 1 0 0 0 Rs1 * o 1 1 1 0

0 0 0 0 | r Rs2 * 0 1 1 1 0

1 o | 1 1 1 0 0 0 Rs1 * 0 1 1 1 0

0 0 0 0 | r Rs2 * 0 1 1 1 0
11 + 14n

159

TRTDRB
Translate, Test, Decrement and Repeat

Example: In nonsegmented mode, if register R6 contains %4002, the bytes at locations %4000
through %4002 contain the values %00, %40, %80, repectively, register R9 contains
%1000, the translation table from location %1000 through %10FF contains 0, 1 ,
2, %7F, 0, 1, 2, %7F (the second zero is located at %1080), and register
R12 contains 3, the instruction

TRTDRB @R6, @R9, R12
will leave the value %40 in RH1 (which was loaded from location %1040). Register
R6 will contain %4000, and R12 will contain 1. R9 will not be affected. The Z and V
flags will be cleared. In segmented mode, register pairs are used instead of R6
and R9.

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

160

TRTIB
Translate, Test and Increment

TRTIB src 1 ; src 2, R src 1: IR
src 2: IR

Operation: RH1 ««- src2[srcl]
AUTOINCREMENT srcl by 1
r r - 1

This instruction is used to scan a string of bytes testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the

1 address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected. The first
source register is then incremented by one, thus moving the pointer to the next ele
ment in the string. The word register specified by "r" (used as a counter) is then
decremented by one. The second source register is unaffected. The source, destina
tion, and counter registers must be separate and non-overlapping registers.
Because the 8-bit target byte is added to the second source register to obtain the
address of a translation value, the table may contain 256 bytes. A smaller table size
may be used where it is known that not all possible 8-bit target byte values
will occur.

Flags: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected .

Nonsegmented Mode Segmented Mode
Addressing

Mode
Assembler Language

Syntax Instruction Format Cycles Instruction Format Cycles

IR: TRTIB @Rsll, @Rs2l
1o|111000 R*1 * 0 0010

0000 r Rs2 * 0 0000

1 o | 1 1 1000 Rs1 * o 0010

0000| r Rs2 * 0 0000

161

TRTIB
Translate, Test and Increment

Example: This instruction can be used in a "loop" of instructions which translate and test a
string of data, but an intermediate operation on each data element is required. The
following sequence outputs a string of 72 bytes, with each byte, of the original string
translated from its 7-bit ASCII code to an 8-bit value with odd parity. Lower case
characters are translated to upper case, and any embedded control characters are
skipped over. The translation table contains 128 bytes, which assumes that the most
significant bit of each byte in the string to be translated is always zero. The first 32
entries and the 128th entry are zero, so that ASCII control characters and the
"delete" character (%7F) are suppressed. The given instruction sequence is for
nonsegmented mode. In segmented mode, register pairs would be used instead of R3
and R4.

LD R5, #72 {initialize counter!
LDA R3, STRING Hoad start address!
LDA R4, TABLE

LOOP:
TRTIB @R3, @R4, R5 !translate and test next byte!
JR Z, LOOP !skip control character!
OUTB PORTn, RH1 !output characters!
JR NOV, LOOP !repeat until counter = 0!

DONE:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.

162

TRTIRB
Test, Increment and Repeat

TRTIRB src 1, src 2, R src 1: IR
src 2: IR

Operation: RH1 src2[srcl]
AUTOINCREMENT srcl by I
r •*- r - 1
repeat until RH1 = 0 or R = 0

This instruction is used to scan a string of bytes, testing for bytes with special
meaning. The contents of the location addressed by the first source register (the
"target byte") are used as an index into a table of translation values whose lowest
address is contained in the second source register. The index is computed by adding
the target byte to the address contained in the second source register. The addition
is performed following the rules for address arithmetic, with the target byte treated
as an unsigned 8-bit value extended with high-order zeros. The sum is used as the
address of an 8-bit value within the table which is loaded into register RH1. The Z
flag is set if the value loaded into RH1 is zero; otherwise the Z flag is cleared. The
contents of the locations addressed by the source registers are not affected.
The first source register is then incremented by one, thus moving the pointer to the
next element in the string. The word register specified by "r" (used as a counter) is
then decremented by one. The entire operation is repeated until either the Z flag is
clear, indicating that a non-zero translation value was loaded into RH1, or until the
result of decrementing r is zero. This instruction can translate and test from 1 to
65536 bytes. The source, destination, and counter registers must be separate and
non-overlapping registers.
Target byte values which have corresponding zero translation table entry values are
scanned over, while target byte values which have corresponding non-zero transla
tion table entry values are detected and terminate the scan. Because the 8-bit target
byte is added to the second source register to obtain the address of a translation
value, the table may contain 256 bytes. A smaller table size may be used where it is
known that not all possible 8-bit target byte values will occur.
This instruction can be interrupted after each execution of the basic operation. The
program counter of the start of this instruction is saved before the interrupt request
is accepted, so that the instruction can be properly resumed. Seven cycles should be
added to this instruction's execution time for each interrupt request that is accepted.

Flags: C: Unaffected
Z: Set if the translation value loaded into RH1 is zero; cleared otherwise
S: Unaffected ’
V: Set if the result of decrementing r is zero; cleared otherwise
D: Unaffected
H: Unaffected

Addressing
Mode

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles2

Segmented Mode

Instruction Format Cycles2

IR: TRTIRB @Rsll, @Rs2l, r
1 01111000 Rs1 * 0 0110

0000| r R*2 * 0 1110
11 +14n 1 0111 1000 Rs1 * 0 0110

0000| r Rs2 * 0 1110
11 + 14n

163

TRTIRB
Test, Increment and Repeat

Example: The following sequence of instructions can be used in nonsegmented mode to scan a
string of 80 bytes, testing for special characters as defined by corresponding non
zero translation table entry values. The pointers to the string and translation table
are set, the number of bytes to scan is set, and then the translation and testing is
done. The Z and V flags can be tested after the operation to determine if a special
character was found and whether the end of the string has been reached. The
translation value loaded into RH1 might then be used to index another table, or to
select one of a set of sequences of instructions to execute next. In segmented mode,
R4 and R5 must be replaced with register pairs.

LDA R4, STRING
LDA R5, TABLE
LD R6, #8Q
TRTIRB @R4, @R5, R6
JR NZ, SPECIAL

END__OF__STRING:

SPECIAL: .
JR OV, LAST__CHAR_SPECIAL

LAST__CHAR__SPECIAL:

Note 1: Word register in nonsegmented mode, register pair in segmented mode.
Note 2: n = number of data elements translated.

164

TSET
Test and Set

TSET dst dst: R, IR# DA, X
TSETB

Operation: S «•- dst(msb)
dst(0:msb) 1 1 1 . . . I l l

Tests the most significant bit of the destination operand, copying its value into the S
flag, then sets the entire destination to all 1 bits. This instruction provides a locking
mechanism which can be used to synchronize software processes which require
exclusive access to certain data or instructions at one time.
During the execution of this instruction, BUSRQ is not honored in the time between
loading the destination from memory and storing the destination to memory. For
systems with one processor, this ensures that the testing and setting of the destination
will be completed without any intervening accesses. This instruction should not be
used to synchronize software processes residing on separate processors where the
destination is a shared memory location, unless this locking mechanism can be
guaranteed to function correctly with multi-processor accesses.

Flags: C: Unaffected
Z: Unaffected
S: Set if the most significant bit of the destination was 1 ; cleared otherwise
V: Unaffected
D: Unaffected
H: Unaffected

Addressing
Mode

R: TSET Rd
TSETB Rbd

IR: TSET @Rdl
TSETB @Rdi

DA: TSET address
TSETB address

Assembler Language
Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

X: TSET addr(Rd)
TSETB addr(Rd)

1 0 001 1 0 W Rd 0110

0000110 W Rd*0 0110

01 00110 W 0 0 0 0 0 1 1 0

0100110 W Rd*0 0110

7

11

1 5

1 0 001 1 0 W Rd 0110

00 Q01 1 0 W Rd*0 0110

7

11

1 7

1 5

1 8

165

TSET
Test and Set

Example: A simple mutually-exclusive critical region may be implemented by the following
sequence of statements:
ENTER:
TSET SEMAPHORE
JR ■ MI,ENTER Hoop until resource con-!

■ !trolled by SEMAPHORE!
• 1 is available!

•.Critical Region—only one software process!
!executes this code at a time!

CLR SEMAPHORE !release resource controlled!
!by SEMAPHORE!

166

XOR
Exclusive Or

XOR dst, src
XORB

dst: R
src: R, IM, IR, DA, X

Operation: dst dst XOR src

Flags:

The source operand is logically EXCLUSIVE ORed with the destination operand and
the result is stored in the destination. The contents of the source are not affected.
The EXCLUSIVE OR operation results in a one bit being stored whenever the cor
responding bits in the two operands are different; otherwise, a zero bit is stored.

C: Unaffected
Z: Set if the result is zdro; cleared otherwise
S: Set if the most significant bit of the result is set; cleared otherwise
P: XOR—unaffected; XORB—set if parity of the result is even; cleared otherwise
D: Unaffected
H: Unaffected

Source
Addressing

Mode
Assembler Language

Syntax

Nonsegmented Mode

Instruction Format Cycles

Segmented Mode

Instruction Format Cycles

R: XOR Rd, Rs
XORB Rbd, Rbs

1M: XOR Rd, #data

XORB Rbd, #data

IR: XOR Rd, @Rsi
XORB Rbd, @Rsi

DA: XOR Rd, address
XORB Rbd, address

X: XOR Rd, addr(Rs)
XORB Rbd, addr(Rs)

1 0 00100 W Rs Rd

0 0 0 0 1 0 0 1 0 0 0 0 Rd

0 01 001 000 0 0 0 0 | Rd

data data

00 00100 W Rs*0 Rd

01 00100 W 0000 Rd

0 1 (o0 1 Oo|w| Rs*0 | Rd

address

SS

|l 0 10 0 1 0 o| wI Rs | Rd |

0 0 0 01 0 01 |0000 | Rd

data

0 0 | 001 000 0000 | ,/Rd

data data

I 0 o|o 0 1 oo|w| Rs*0 | Rd |

0 1 |o 0 1 oo|w 0000 | Rd

01 segment offset

10 SS

01 00 1 oow 0 0 0 0 | Rd

SL 1| segment 0000 0000

offset

01 |o o i oo|w Rs*0 | Rd

01 segment offset

0 1 |o0 i oo|w Rs*0 | Rd

SL 1 segment 00000000
offset

10

12

10

13

167

XOR
Exclusive Or

Example: If register RL3 contains %C3 (11000011) and the source operand is the immediate
value %7B (01111011), the statement

XORB RL3,#%7B
will leave the value %B8 (10111000) in RL3.

Note J: Word register in nonsegmented mode, register pair in segmented mode.

168

EPA Instruction Templates

There are seven "templates" for EPA instruc
tions. These templates correspond to EPA
instructions, which combine EPU operations
with possible transfers between memory and an
EPU, between CPU registers and EPU regis
ters, and between the Flag byte of the CPU's
FCW and the EPU. Each of these templates is
described on the following pages. The descrip
tion assumes that the EPA control bit in the
CPU's FCW has been set to 1. In addition, the
description is from the point of view of
the CPU—that is, only CPU activities are
described; the operation of the EPU is implied,

but the full specification of the instruction
depends upon the implementation of the EPU
and is beyond the scope of this manual.

Fields ignored by the CPU are shaded in the
diagrams of the templates. The 2-bit field in bit
positions 0 and 1 of the first word of each
template would normally be used as an identi
fication field for selecting one of up to four
EPUs in a multiple EPU system configuration.
Other shaded fields would typically contain
opcodes for instructing an EPU as to the oper
ation it is to perform in addition to the data
transfer specified by the template.

Extended Instruction
Load Memory from EPU

Operation: Memory EPU

The CPU performs the indicated address calculation and generates n EPU memory
write transactions. The n words are supplied by an EPU and are stored in n con
secutive memory locations starting with the effective address.

Flags/Registers: No flags or CPU registers are affected by this instruction.

Clock Cycles
mode dst NS SS SL
0 0 IR (dst gt 0) 11 + 3n
0 1 X (dst * 0) 15 + 3n 15 + 3n 18 + 3n
0 1 DA (dst = 0) 14 + 3n 15 + 3n 17 + 3n

169

Extended Instruction
Load EPU from Memory

Operation: EPU ■+ - Memory

The CPU performs the indicated address calculation and generates n EPU memory
read transactions. The n consecutive words are fetched from the memory locations
starting with the effective address. The data is read by an EPU and operated upon
according to the EPA instruction encoded into the shaded fields.

Flags/Registers: No flags or CPU registers are affected by this instruction.

mode src
Clock Cycles

NS SS SL
0 0 IR (src =£ 0) 11 + 3n
0 1 X (src =£ 0) 15 + 3n 15 + 3n 18 + 3n
0 1 DA (src = 0) 14 + 3n 15 + 3n 17 + 3n

Extended Instruction
Load CPU from EPU

Operation: CPU •«- EPU registers

The contents of n words are transferred from an EPU to consecutive CPU registers
starting with register dst. CPU registers are transferred consecutively, with register 0
following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 3n cycles.

1 0 0 0 1 1 1 11 0 | ' 0 0 [
mm y£S n.r

170

Operation: EPU CPU registers

Extended Instruction
Load EPU from CPU

The contents of n words are transferred to an EPU from consecutive CPU registers
starting with register src. CPU registers are transferred consecutively, with register 0

• following register 15.

Flags/Registers: No flags are affected by this instruction.

Execution Time: 11 + 3n cycles.

Extended Instruction
Load FCW from EPU

Operation: Flags ■ *- EPU

The Flags in the CPU's Flag and Control Word are loaded with information from an
EPU on AD lines AD0-AD7.

Flags/Registers: The contents of CPU register 0 are undefined after the execution of this instruction.

Execution Time: 14 cycles.

1 0 0 0 1 1

I S 00

171

Extended Instruction
Load EPU from FCW

Operation: EPU Flags

The Flags in the CPU's Flag and Control Word are transferred to an EPU on AD
lines AD0-AD7.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 14 cycles.

Extended Instruction
Internal EPU Operation

Operation: Internal EPU Operation

The CPU treats this template as a No Op. It is typically used to initiate an internal
EPU operation.

Flags/Registers: The flags in the FCW are unaffected by this instruction.

Execution Time: 14 cycles.

172

Program m ers Quick Reference
Clock Cycles*

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

ADC R,src R 5 Add with Carry
ADCB R — R + src + carry
ADD R,src R 4 4 4 8 8 8 Add
ADDB IM 7 7 7 14 14 14 R — R + src
ADDL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

AND R,src R 4 4 4 AND
ANDB IM 7 7 7 R — R AND src

IR 7
DA 9 10 12
X 10 10 13

BIT dst,b R 4 4 4 Test Bit Static
BITB IR 8 Z flag — NOT dst bit specified by b

DA 10 11 13
X 11 11 14

BIT dst,R R 10 10 10 Test Bit Dynamic
BITB Z flag — NOT dst bit specified by

contents of R
CALL dst IR 10 10 15 Call Subroutine

DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP - PC

PC - dst
CALR dst RA 10 10 15 Call Relative

Autodecrement SP
@ SP — PC
PC — PC + dst(range -4094 to
+ 4096)

CLR dst R 7 7 7 Clear
CLRB IR 8 dst — 0

DA 11 12 14
X 12 12 15

COM dst R 7 7 7 Complement
COMB IR 12 dst — NOT dst

DA 15 16 18
X 16 16 19

COMFLG flags 7 7 7 Complement Flag
(Any combination of C, Z, S, P/V)

CP R,src R 4 4 4 8 8 8 Compare with Register
CPB IM 7 7 7 14 14 14 R - src
CPL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

CP dst,IM IR 11 Compare with Immediate
CPB DA 14 15 17 dst - IM

X 15 15 18

* NS = Non-Segmented, SS = Short Segmented Offset, SL = Segmented Long Offset, Blank = Not Implemented.

173

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

CPD Rx,src,RY,cc IR 20 Compare and Decrement
CPDB Rx - src

Autodecrement src address
Ry — Ry — 1

CPDR Rx,src,Ry,cc IR (11 + 9n) Compare, Decrement and Repeat
CPDRB Ry - src

Autodecrement src address
Rx - Ry - i
Repeat until cc is true or Ry = 0

CPI Rx,src,Ry,cc IR 20 Compare and Increment
CPIB Rx - src '

Autoincrement src address
Ry — Ry — 1

CPIR Rx,src,Ry,cc IR (11 + 9n) Compare, Increment and Repeat
CPIRB Rx - src

Autoincrement src address
Ry — Ry — 1
Repeat until cc is true or Ry = 0

CPSD dst,src,R,cc IR 25 Compare String and Decrement
CPSDB dst - src

Autodecrement dst and src addresses
R — R - 1

CPSDR dst,src,R,cc IR (11 + 14n) Compare String, Deer, and Repeat
CPSDRB dst - src

Autodecrement dst and src addresses '
R — R - 1
Repeat until cc is true or R = 0

CPSI dst,src,R,cc IR 25 Compare String and Increment
CPSIB dst - src

Autoincrement dst and src addresses
R - R - 1

CPSIR dst,src,R,cc IR (11 + 14n) Compare String, Incr. and Repeat
CPSIRB dst - src

Autoincrement dst and src addresses
R - R - 1
Repeat until cc is true or R = 0

DAB dst R 5 5 5 Decimal Adjust
DEC dst,n R 4 4 4 Decrement by n
DECB IR 11 dst — dst - n

DA 13 14 16 (n = 1 —16)
X 14 14 17

DI* int 7 7 7 Disable Interrupt
(Any combination of NVI, VI)

DIV R,src R 107 744 Divide (signed)
DIVL 1M 107 744 Word: Rn + i - Rn,n + i + src

IR 107 107 107 744 744 744 Rn— remainder
DA 108 109 111 745 746 748 Long Word: Rn + 2,n + 3*" Rn...n + 3 + src
X 109 109 112 746 746 749 Rnn + 1 *“ remainder

^Privileged instruction. Executed in system mode only.

174

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

DJNZ R,dst RA 11 11 11 Decrement and Jump if Non-Zero
DBJNZ R - R - 1

If R =£ .0: PC — PC + dst(range -254 to 0)

El* int 7 7 7 Enable Interrupt
(Any combination of NVI, VI)

EX R,src R 6 6 6 Exchange
EXB IR 12 R — src

DA 15 16 18
X 16 16 19

EXTS dst R 11 11 11 11 11 11 Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst
HALT* (8 + 3 n) HALT
IN* R,src IR 10 Input
INB* DA 12 12 12 R — src

INC dst,n R 4 4 4 Increment by n
INCB IR 11 dst — dst + n

DA 13 14 16

COII

X 14 14 17
IND* dst, src, R IR 21 Input and Decrement
INDB* dst — src

Autodecrement dst addresed
R — R - 1

INDR* dst,src,R IR (11 + .lOn) Input, Decrement and Repeat
INDRB* dst — src

Autodecrement dst address
R — R - .1
Repeat until R = 0

INI* dst,src,R IR 21 Input and Increment
INIB* dst — src

Autoincrement dst address
R — R - 1

INIR* dst,src,R IR (11 + ' lOn) Input, Increment and Repeat
IN1RB* dst — src

Autoincrement dst address
R — R - 1
Repeat until R = 0

IRET* 13 13 16 Interrupt Return
PS - @ SP
Autoincrement SP

JP cc,dst IR 10 15 (taken) Jump Conditional
IR 7 7 (not taken) If cc is true: PC — dst
DA 7 8 10
X 8 8 11

JR cc,dst RA 6 6 6 Jump Conditional Relative
If cc is true: PC — PC + dst
(range -256 to + 254)

^Privileged instruction. Executed in system mode only.

175

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

LD R,src R 3 3 3 5 5 5 Load into Register
LDB IM 7 7 7 11 11 11 R — src
LDL IM 5 (byte only)

IR 7 11
DA 9 10 12 12 13 15
X 10 10 13 13 • 13 16

BA 14 14 17 17
BX 14 14 17 17

LD dst,R IR 8 11 Load into Memory (Store)
LDB DA 11 12 14 14 15 17 dst — R
LDL X 12 12 15 15 15 18

BA 14 14 14 17 17 17
BX 14 14 14 17 17 17

LD dst,IM IR 11 Load Immediate into Memory
LDB DA 14 15 17 dst - IM

X 15 15 18
LDA R,src DA 12 13 15 Load Address

X 13 13 16 R — source address
BA 15 15 15
BX 15 15 15

LDAR R,src RA 15 15 15 Load Address Relative
LDCTL* CTLR,src R 7 7 7 Load into Control Register

CTLR — src

LDCTL* dst,CLTR R 7 7 7 Load from Control Register
dst - CTLR

LDCTLB FLGR,src R 7 7 7 Load into Flag Byte Register
FLGR — src •

LDCTLB dst,FLGR R 7 7 7 Load from Flag Byte Register
dst - FLGR

LDD dst,src,R IR 20 Load and Decrement
LDDB dst — src

Autodecrement dst and src addresses
R — R + 1

LDDR dst,src,R IR (11 + !9 n) Load, Decrement and Repeat
LDDRB dst — src

Autodecrement dst and src addresses
R - R - 1
Repeat until R = 0

LDI dst,src,R IR 20 Load and Increment
LDIB dst — src

Autoincrement dst and src addresses
R - R - 1

LDIR dst,src,R IR (11 + 9 n) Load, Increment and Repeat
LDIRB dst •— src

Autoincrement dst and src addresses
R — R - 1 '
Repeat until R = 0

176

Clock Cycles

Mnemonics Operands Addr. Word. Byte Long Word Operation
Modes NS ss SL NS SS SL

LDK R,src IM 5 5 5 Load Constant
R - n (n = 0...15)

LDM R,src,n IR 11 Load Multiple
DA 14 15 17 + 3n dst — src (n consecutive words)
X 15 15 18 (n = 1... 16)

LDM dst,R,n IR 11 Load Multiple (Store Multiple)
DA 14 15 17 + 3n dst — R (n consecutive words)
X 15 15 18 (n = 1... 16) •

LDPS* src IR 12 Load Program Status
DA 16 20 22 PS ~'src
X 17 20 23

LDR R,src RA 14 14 14 17 17 17 Load Relative
LDRB R — src

(range -32768...+32767)

LDR dst.R' RA 14 14 14 17 17 17 Load Relative (Store Relative)
LDRB dst — R
LDRL (range-32768...+32767)

MBIT* 7 7 7 Test Multi-Micro Bit
Set if Mj is Low; reset S if Mj is High.

MREQ* dst R (12 + 7n) Multi-Mircre Request

MRES* 5 5 5 Multi-Micro Reset
MSET* 5 5 5 Multi-Micro Set
MULT R,src R 70 70 70 282+ 282+ 282 + Multiply (signed)
MULTL IM 70 70 70 282+ 282+ 282 + Word: Rn,n+1- Rn + 1 * src

IR 70 282 + Long Word: Rn...n + 3~ Rn + 2, n + 3 • src
DA 71 72 74 283+ 283+ 286 + + Plus seven cycles for each 1 in the
X 72 72 75 284+ 284+ 287 + absolute value of the low order 16 bits of the

multiplicand.

NEG dst R 7 7 7 Negate
NEGB IR 12 dst — 0 - dst

DA 15 16 18
X 16 16 19

NOP 7 7 7 No Operation
OR R,src R 4 4 4 OR
ORB IM 7 7 7 R — R OR src

IR 7
DA 9 10 12
X 10 10 13

OTDR* dst, src, r IR (11 + 10 n) Output, Decrement and Repeat
OTDRB* dst — src

Autodecrement src address
R - R - 1
Repeat until R = 0

•Privileged instructions. Executed in system mode only.

177

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

OTIR* dst(src,R IR (11 + 10 n) Output, Increment and Repeat
OTIRB* dst — src

Autoincrement scr address
R — R - 1
Repeat until R = 0

OUT* dst,R IR 10 Output
OUTB* DA 12 12 12 dst —. R
OUTD* dst,src,R IR 21 Output and Decrement
OUTDB* dst — src

Autodecrement src address
R — R - 1

OUTI* dst,src,R IR 21 Output and Increment
OUTIB* dst — src

Autoincrement src address
R — R - 1

POP dst.IR R 8 8 8 12 12 12 Pop
POPL IR 12 19 dst - IR

DA 16 16 18 23 23 25 Autoincrement contents of R
X 16 16 19 23 23 26

PUSH IR,src R 9 9 9 12 12 12 Push
PUSHL IM 12 12 12 Autodecrement' contents of R

IR 13 20 IR — src
DA 14 14' 16 16 21 23
X 14 14 17 21 21 24

RES dst,b R 4 4 4 Reset Bit Static
RESB IR 11 Reset dst bit specified by b

DA 13 14 16
X 14 14 17

RES dst,R R 10 10 10 Reset Bit Dynamic
RESB Re,set dst bit specified by contents R

RESFLG flag 7 7 7 Reset Flag
(Any combination of C, Z, S, P/V)

RET cc 10 10 13 (taken) Return Conditional
7 7 7 (not taken) If cc is true: PC — @ SP Autoincrement SP

RL dst,n R 6 for n = 1 Rotate Left
RLB R 7 for n = 2 by n bits (n = 1, 2)

RLC dst,n R 6 for n = 1 Rotate Left through Carry
RLCB R 7 for n = 2 by n bits (n = 1,2)
RLDB R,src R 9 9 9 Rotate Digit Left
RR dst(n R 6 for n = 1 Rotate Right
RRb R 7 for n = 2 by n bits (n = 1,2)
RRC dst,n R 6 for n = 1 Rotate Right through Carry
RRCB R 7 for n = 2 by n bits (n = 1,2)

•Privileged instruction. Executed in system mode only.

178

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

RRDB R,src R 9 9 9 Rotate Digit Right
SBC R,src R 5 5 5 Subtract with Carry
SBCB R — R - src - carry
SC src IM 33 39 System Call

Autodecrement SP
@ SP - old PS
Push instruction
PS *- System Call PS

SDA dst.R R (15 + 3h) (15 + 3n) Shift Dynamic Arithmetic
SDAB Shift dst left or right
SDAL by contents of R
SDL dst.R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right
SDLL by contents of R
SET dst,b R 4 4 4 Set Bit Static
SETB IR 11 Set dst bit specified by b

DA 13 14 16
•X 14 14 17

SET dst,R R 10 10 10 Set Bit Dynamic
SETB Set dst bit specified by contents of R

SETFLG flag X 7 7 7 Set Flag
(Any combination of C, Z, S, P'V)

SIN* R,src DA 12 12 12 Special Input
SINB* R — src
SIND* dst,src,R IR 21 Special Input and Decrement
SINDB* dst — src

Autodecrement dst address-
R - R - 1

SINDR* dst, src, R IR (11 + lOn) Special Input, Decrement and Repeat
SINDRB* dst — src

Autodecrement dst address
R — R - 1
Repeat until R = 0

SINI* dst,src,R IR 21 Special Input and Increment
SINIB* dst — src

Autoincrement dst address ’
R - R - 1

SINIR* dst,src,R IR (11 + lOn) Special Input, Increment and Repeat
SINIRB* dst — src

Autoincrement dst address
R - R - 1
Repeat until R = 0

SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic
SLAB
SLAL

by n bits

SLL dst,n R (13 + 3n) (13 + 3n) Shift Left Logical
SLLB by n bits
SLLL

‘ Privileged instruction. Executed in system mode only.

179

Clock Cycles

Mnemonics Operands Addr. Word, Byte Long Word Operation
Modes NS SS SL NS SS SL

SOTDR* dst,src,R IR (11 + 10 n) Special Output, Deer, and Repeat
SOTDRB* dst — sre

Autodecrement sre address
R — R - 1
Repeat until R = 0

SOTIR* dst,src(R R (11 + 10 n) Special Output, Incr. and Repeat
SOTIRB* dst — sre

Autoincrement sre address
R - R - 1
Repeat until R = 0

SOUT* dst,src DA 12 12 12 Special Output
SOUTB* dst — sre ‘
SOUTD* dst,sre,R IR 21 Special Output and Decrement
SOUTDB* dst ■— sre

Autodecrement sre address
R - R - 1 .

SOUTI* dst,src,R IR 21 Special Output and Increment
SOUTIB* dst — sre

Autoincrement sre address
R — R - 1

SRA dst,n R (13 + 3 n) (13 + 3 n) Shift Right Arithmetic
SRAB
SRAL

by n bits

SRL dst,n R (13 + 3 n) (13 + 3 n) Shift Right Logical
SRLB by n bits
SRLL
SUB R,src R 4 4 4 8 8 8 Subtract
SUBB IM 7 7 7 14 14 14 R — R - sre
SUBL IR 7 14

DA 9 10 12 15 16 18
X 10 10 13 16 16 19

TCC cc,dst R 5 5 5 Test Condition Code
TCCB Set LSB if cc is true
TEST dst R 7 7 7 13 13 13 Test
TESTB IR 8 13 dst OR 0

DA 11 12 14 16 17 19
X 12 12 15 17 17 20

^Privileged instructions. Executed in system mode only.

180

Clock Cycles

Mnemonics Operands Addr.
Modes

Word. Byte
NS SS SL

Long Word Operation
NS SS SL

TRDB dst,src,R IR 25 Translate and Decrement
dst — src(dst)
Autodecrement dst address
R — R - 1

TRDRB dst, src, R IR (11 + 14n) Translate. Decrement and Repeat
dst — src (dst)
Autodecrement dst address
R — R 1
Repeat until R = 0

TRIB dst,src,R IR 25 Translate and Increment
dst — src (dst)
Autoincrement dst address
R - R - 1

TRIRB dst, src, R IR (11 + 14n) Translate, Increment and Repeat
dst — src (dst)
Autoincrement dst address
R - R - 1
Repeat until R = 0

TRTDB srcl,src2,R IR 25 Translate and Test, Decrement
RH1 — src 2 (src 1)
Autodecrement src 1 address
R — R - 1

TRTDRB srcl,src2,R IR (11 + 14n) Translate and Test, Deer, and Repeat
RH1 — src2 (src 1)
Autodecrement src 1 address
R — R - 1
Repeat until R = 0 or RH1 =£ 0

TRTIB srcl,src2,R IR 25 Translate and Test, Increment
RH1 — src2 (src 1)
Autoincrement src address
R - R - 1

TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test, Incr. and Repeat
RH1 — src2 (srcl)
Autoincrement src 1 address
R - R1
Repeat until R = 0 or RH1 =£ 0

TSET
TSETB

dst R
IR
DA
X

7
11
14
15

7

15
15

7

17
18

Test and Set
S flag — MSB of dst
dst — all Is

XOR R,src R 4 4 4 Exclusive OR
XORB IM 7 7 7 R — R XOR src

IR 7
DA 9 10 12
X 10 10 13

181

LOWER NIBBLE (HEX). UPPER INSTRUCTION BYTE

_0_________1_________2 3_________I 5_________6_________7 8 9________ A________ B C P E ________ F_
ADDB

R — IB
R — IM

ADD
R - IR

n - im

SUBB
R — IR
R — IM

SUB
R - IR
R — IM

ORB
R - IR
R — IM

OR
R - IR
R — IM

ANDB
R - IR
R — IM

AND
R — IR
R — IM

XORB
R — IR
R — IM

XOR
R — IR
R - IM

CPB
R — IR
R — IM

CP
R — IR
R — IM

See
Table

1

See
Table

1

EXTEND
INST

EXTEND
INST

CPL
R — IR
R — IM

PUSHL
IR — IR

SUBL
R — IR
R — IM

PUSH
IR — IR

LDL
R — IR
R — IM

POPL
IR — IR

ADDL
R — IR
R — IM

POP
IR — IR

MULTL
R — IR
R — IM

MULT
R — IR
R — IM

DIVL
R - IR
R — IM

DIV
R — IR
R — IM

See
Table

2

LDL
IR — R

JP
PC — IR

CALL
PC — IR

LDB
R — IR
R — IM

LD
R — IR
R — IM

RESB
IR — IM
R - R

RES
IR — IM
R - R

SETB
IR — IM
R — R

SET
IR — IM
R — R

BITB
IR — IM
R — R

BIT
IR — IM
R - R

INCB
IR - IM

INC
IR - IM

DECB
IR — IM

DEC
IR — IM

EXB
R — IR

EX
R — IR

LDB
IR —R

LD
IR —R

LDB
R — BA

LDRB
R — RA

LD
R — BA

LDR
R — RA

LDB
BA — R

LDRB
RA — R

LD
BA — R

LDR
RA — R

LDA
R — BA

LDAR
R ~ RA

LDL
R - BA

LDRL
R — RA

RSVD LDL
BA — R

LDRL
RA - R

RSVD LDPS
IR

See
Table

3A

See
Table

3B

INB
R —IR

IN
R —IR

OUTB
IR —R

OUT
IR —R

ADDB
R — X

R - DA

ADD
R — X

R •— •DA

SUBB
R - X

R — DA

SUB
R — X

R — DA

ORB
R — X

R — DA

OR
R — X

R — DA

ANDB
R - X

R — DA

AND
R - X

R — DA

XORB
R — X

R - DA

XOR
R — X

R — DA

CPB
R - X

R — DA

CP
R — X

R — DA

See
Table

1

See
Table

1

EXTEND
INST

EXTEND
INST

CPL
R — X

R — DA

PUSHL
IR — X

IR — DA

SUBL
R — X

R — DA

PUSH
IR — X

IR — DA

LDL
R - X

R — DA

POPL
IR — X

IR — DA

ADDL
R — X

R — DA

POP
IR — X

IR - DA

MULTL
R - X •

R — DA

MULT
R — X

R — DA

DIVL
R — X

R — DA

DIV
R — X

See
Table

2

LDL
X — R

D A -R

JP
P C -X

P C -D A

CALL
P C -X

P C -D A

LDB
R — X

R — DA

LD
R — X

R — DA

RESB
X - IM

DA — IM

RES
X - IM

DA — IM

SETB
X — IM

DA - IM

SET
X — IM

DA - IM

BITB
X — IM

DA — IM

BIT
X - IM

DA — IM

INCB
X — IM

DA — IM

INC
X — IM

DA - IM

DECB
X — IM

DA - IM

DEC
X — IM

DA — IM

EXB
R -X

R -D A

EX
R -X

R -D A

LDB
X -R

D A -R

LD
X -R

D A -R

LDB
R — BX

Sh
Table

7

LDB
BX - R

LD
BX — R

LDA
R — BX

LDL
R — BX

LDA
R - X

R — DA

LDL
BX — R

RSVD LDPS
PS — X

PS — DA

HALT See
Table

7

El
DI

See
Table

7

RSVD SC

ADDB
R — R '

ADD
R — R

SUBB
R - R

SUB
■ R - R

ORB
R — R

OR
R — R

ANDB
R - R

AND
R - R

XORB
R - R

XOR
R — R ,

CPB
R — R

CP
R — R

See
Table

1

See
Table

1

EXTEND
INST.

EXTEND
INST.

CPL
R - R

PUSHL
IR — R

SUBL
R — R

PUSH
IR — R

LDL
R - R

POPL
R — IR

ADDL
R — R

POP -
R — JR

MULTL
R — R

MULT
R — R

DIVL
R - R

DIV
R — R

See
Table

2

RSVD RET
PC-(SP)

RSVD

LDB
R — R

LD
R — R

RESB
R — IM

RES
R ~ IM

SETB
R — IM

SET
R — IM

BITB
R — itf

BIT
R — IM

INCB
R — IM

INC
R — IM

DECB
R — IM

DEC
R — IM

EXB
R -R

EX
R -R

TCCB
R

TCC
R

DAB

R

EXTS
EXTSB
EXTSL

R

Sh
Table

4

See
Table

4

ADCB
R - R

ADC
R — R

SBCB
R - R

SBC
R — R

See
Table

5

RSVD See
Table

6

See
Table

6

RRDB
R

LDK
R —IM

RLDB
R

RSVD

LDB
Rs~ IM

CALR
PC — RA

JR
PC — RA

DJNZ
DBJNZ

PC - RA

Op Code Map

Notes:
1) Reserved Instructions (RSVD) should not be
used. The result of their execution is not defined.
2) The execution of an extended instruction will
result in an Extended Instruction Trap if the EPA
bit in the FCW is a zero. If the flag is a one the
Extended Instruction will be executed by the EPU
function.

182

3B8C 8D
COMB

R
COM

R

LDCTLB
R —FLGS

SETFLG

NEGB
R

NEG
R

RSVD RESFLG

TESTB
R

TEST
R

RSVD COMFLG

TSETB
R

TSET
R

RSVD NOP

CLRB
R

CLR
R

LDCTLB
FLGS— R

OC OD
COMB

IR
COM

IR

CPB
IR.IM

CP
IR.IM

NEGB
IR

NEG
IR

RSVD RSVD

TESTB
IR

TEST
IR

LDB
IR— IM

LD
IR — IM

TSETB
IR

TSET
IR

RSVD RSVD

CLRB
IR

CLR
IR

PUSH
IM

COMB COM
X X

DA DA

CPB CP
X.IM X.IM

DA.IM DA.IM

NEGB NEG
X X

DA DA

RSVD RSVD

TESTB TEST
X X

DA DA

LDB LD
X — IM X —IM

DA — IM DA — IM

TSETB TSET
X X

DA DA

RSVD RSVD

CLRB CLR
X X

DA DA

Table 1. Upper Instruction Byte

£ O
w P
gg
i e
B s
I s >2 £ O

1C ___ 5C
1 S V T RSVD

LDM LDM
R — IR R —X

R -D A

TESTL TESTL
IR X

DA

LDM LDM
IR— R X - R

D A-R

9C
RSVD

TESTL
R

3A
I NIB

IR — IR
INIRB
IR — IR

INI
IR —IR
INIR

IR —IR

SIN1B
IR — IR
SINIRB
IR— IR

SINI
IR — IR
SINIR
IR — IR

OUTIB
IR — IR
OTIRB
IR — IR

OUTI
IR —IR
OUTIR
IR — IR

SOUTIB
IR — IR

SOTIRB
IR — IR

SOUTI
IR —IR
sotir
IR —IR

1NB
R -D A

IN
R -D A

SINB
R -D A

SIN
R -D A

OUTB
D A - R

OUT
D A -R

SOUTB
D A - R

SOUT
D A -R

INDB
IR — IR
INDRB
IR — IR

IND
IR — IR
INDR
IR — IR

S1NDB
IR — IR

SINDRB
IR — IR

SIND
IR — IR
SINDR
IR — IR

OUTDB
IR — IR

OTDRB
IR — IR

OUTD
IR — IR
OTDR
IR — IR

SOUTDB
IR — IR

SOTDRB
IR — IR

SOUTD
IR — IR

SOTDR
IR — IR

Table 2. Upper Instruction Byte Table 3. Upper Instruction Byte

183

B2 B3

RLB RL
(1 bit) (1 bit)

R R

SLLB SLL
R R

SRLB SRL
R R

RLB RL
(2 bits) (2 bits)

R R

SDLB SDL
R R

RRB RR
fl bit) (1 bit)

R R

SLLL
RSVD R

SRLL

RRB RR
(2 bits) (2 bits)

R R

RSVD SDLL
R

RLCB RLC
(1 bit) (1 bit)

R R

SLAB SLA
R R

SRAB SRA
R R

RLCB RLC
(2 bits) (2 bits)

R R

SDAB SDA
R . R

RRCB RRC
(1 bit) (1 bit)

R R

SLAL
RSVD R

SRAL

RRCB RRC
(2 bits) (2 bits)

R R

SDAL
RSVD R

2

3

5

D

B8
TRIB
IR

RSVD

TRTIB
IR

RSVD

TRIRB
IR

RSVD

TRTIRB
IR

RSVD

TRDB
IR

RSVD

TRTDB
IR

RSVD

TRDRB
IR

RSVD

TRTDRB
IR

RSVD

BA_______ BB 7B 7D
CPIB

IR
CPI
IR

LDIB
IR — IR
LDIRB
IR — IR

LDI
IR — IR
LDIR
IR — IR

CPS1B
IR

CPSI
IR

RSVD RSVD

CPRIB
IR

CPIR
IR

RSVD RSVD

CPSIRB
IR

CPSIR
IR

RSVD RSVD

CPDB
IR

CPD
IR

LDDB
IR - IR

LDDRB
IR —IR

LDD
IR — IR
LDDR
IR —IR

CPSDB
IR

CPSD
IR

RSVD RSVD

CPDRB
IR

CPDR
IR

RSVD RSVD

CPSDRB
IR

CPSDR
IR

RSVD RSVD

IRET
PC-(SSP)

RSVD

RSVD RSVD

RSVD LDCTL
R — FCW

RSVD LDCTL
R — RFRSH

RSVD LDCTL
R -

PSAPSEG

RSVD LDCTL
R —

PSAPOFF

RSVD LDCTL
R — NSPSEG

RSVD LDCTL
R-NSPOFF

MSET RSVD

MRES RSVD

MBIT LDCTL
FCW -R

RS VD LDCTL
RFRSH-R

LDCTL
PSAPSEG

-R

MREQ
R

LDCTL
PSAPOFF

-R

RSVD LDCTL
NSPSEG-R

RSVD
LDCTL

NSPOFF — R

Table 4.
Upper Instruction Byte

Table 5.
Upper Instruction Byte

Table 6.
Upper Instruction Byte

Table 7.
Upper Instruction Byte

184

Topical Index
Data Addressing Flags

Instruction Description Mnemonic Types Modes Affected
Arithmetic

Add with Carry ADC B, W R C, Z, S, V, D1, H1
Add . ADD B, W, L R, IM, IR, DA, X C, Z, S, V, D1, H1
Compare (Immediate) CP B, W IR, DA, X C, Z, S, V
Compare (Register) CP B, W, L R, IM, IR, DA, X C, Z, S, V
Decimal Adjust Bit DAB B IR C, Z, S
Decrement DEC B, W R, IR, DA, X Z, S, V
Divide DIV W, L . R, IM, IR, DA, X C, Z, S, V
Extend Sign EXTS B, W, L R C, Z, S, V
Increment INC B, W R, IR, DA, X Z, S, V
Multiply MULT W, L R, IM, IR, DA, X C, Z, S, Vo
Negate NEG B, W R, IR, DA, X C, Z, S, V
Subtract with Carry SBC B, W R C, Z, S, V, D1, H1
Subtract SUB B, W, L R, IM, IR, DA, X C, Z, S, V, D1, H1

Bit Manipulation
Bit Test BIT B, W R Z
Bit Reset (Static) RES B, W R, IR, DA, X _
Bit Reset (Dynamic) RES B, W R —
Bit Set (Static) SET B, W R, IR, DA, X —
Bit Set (Dynamic) SET B, W R —
Bit Test and Set TSET B, W R, IR, DA, X S

Block Transfer and String Manipulation
Compare and Decrement CPD B, W IR C, Z, S, V
Compare, Decrement, and Repeat CPDR B, W IR C, Z, S, V
Compare and Increment CPI B, W IR C, Z, S, V
Compare, Increment, and Repeat CPIR B, W IR C, Z, S, V
Compare String and Decrement CPSD B, W IR C, Z, S, V
Compare String, Decrement, and Repeat CPSDR B, W IR G, Z, S, V
Compare String and Increment CPSI B, W IR C, Z, S, V
Compare String, Increment, and Repeat CPSIR B, W IR C, Z, S, V
Load and Decrement LDD B, W IR V
Load, Decrement, and Repeat LDDR B, W IR V
Load and Increment LDI B, W IR V
Load, Increment, and Repeat LDIR B, W IR V
Translate and Decrement TRDB B IR Z, V
Translate, Decrement, and Repeat TRDRB B IR z, V
Translate and Increment TRIB B IR z, V
Translate, Increment, and Repeat TRIRB B IR z, V
Translate, Test, and Decrement TRTDB B IR z, V
Translate, Test, Decrement, Repeat TRTDRB B IR z, V
Translate, Test, and Increment TRTIB B IR Z, V
Translate, Test, Increment, and Repeat TRTIRB B IR z, V

CPU Control Instructions
Complement Flag . COMFLG — — C2, Z2, S2, P2, v2 .
Disable Interrupt DI — — —
Enable Interrupt El — —
Halt HALT — — —
Load Control Register (from register) LDCTL — R C2, Z2, S2, P2, D2, H2
Load Control Register (to register) LDCTL — — —
Load Program Status LDPS — IR, DA, X C, Z, S, P, D, H
Multi-Bit Test MBIT — — s
Multi-Micro Request MREQ — — z, s
Multi-Micro Reset MRES — — —
Multi-Micro Set MSET — — —
No Operation NOP — — —
Reset Flag RESFLG — — C2, Z2, S2, P2, V2
Set Flag SETFLG — — C2, Z2, S2, P2, V2

1. F lag affected only for byte op eration .

2 . F la g m odified only if sp ecified by the in struction .

185

Topical Index (Continued)

Instruction Description Mnemonic
Data

Types
Addressing

Modes
Flags

Affected

Input/Output Instructions3
Input (S)IN3 B, W

Regular Special
IR, DA (DA)

Input and Decrement (S)IND3 B, W IR (IR) V
Input, Decrement and Repeat (S)INDR3 B, W IR (IR) V
Input and Increment (S)INI3 B, W IR (IR) V
Input, Increment, and Repeat (S)INIR3 B, W IR (IR) V
Output (S)OUT3 B, W IR, DA (DA) —

Output and Decrement . (S)OUTD3 B, W IR (IR) V
Output, Decrement, and Repeat (S)OUTDR3 B, W IR (IR) V
Output and Increment (S)OUTI3 B, W IR (IR) V
Output, Increment, and Repeat (S)OUTIR3 B, W IR (IR) V

Logical Instructions
And AND B, W R, IM, IR, DA, X z, S, P
Complement COM B, W R, IR, DA, X z, S, P
Or OR B, W R, IM, IR, DA, X z, S, P
Test TEST B, W, L R, IR, DA, X z, S, P
Test Condition Code TCC B, W R —

Exclusive Or XOR B, W R, IM, IR, DA, X z, S, P

Program Control Instructions
Call Procedure CALL _ IR, DA, X —

Call Procedure Relative CALR — RA —

Decrement, Jump if Not Zero DJNZ B, W RA —

Interrupt Return IRET — — C, Z, S, P, D, H
Jump JP — IR, DA, X —

Jump Relative JR — RA —
Return From Procedure RET — — —
System Call SC - - -

Rotate and Shift Instructions
Rotate Left RL B, W R —
Rotate Left Through Carry RLC B, W R C, Z, S, V
Rotate Left Digit RLDB B ' R z, s
Rotate Right RR B, W R C, Z, S,\V
Rotate Right Through Carry RRC B, W R c , z, s/v
Rotate Right Digit RRDB B R z, s
Shift Dynamic Arithmetic SDA B, W, L R C, Z, S, V
Shift Dynamic Logical SDL B, W, L R C, Z, S, V
Shift Left Arithmetic SLA B, W, L R C, Z, S, V
Shift Left Logical SLL B, W, L R C, Z, S, V
Shift Right Arithmetic SRA B, W, L R C, Z, S, V
Shift Right Logical SRL B, W, L R C, Z, S, V

3. Each I/O instruction has a Special counterpart used to alert other devices that a Special I/O transaction is occur
ring. The Special I/O mnemonic is S + Regular mnemonic. Refer to section 6.2.8 for further details.

186

1 RO [7 RMO 0 7 RLO o| I R0I7 RHO ;7 RLO °lno ^
Rt [15 RH1 RL1 ° I

RR° s -----------
{ R1 | 15 RHt ; rli o|

nni | R2 I RH2 RL2 J | R2I ' RH2 | RL2

R3 I RH3 RL3 H l R31 RH3 : rl3

R4 RH4 RL4 I RJ R<l RH« RL4

R5 RHS ; RL5 I 1 R51 RHS ; RL5

R6 | RH6 RL6 J I j R61 RH6

R7 I RHT : RL7 J J 1 r t| RH7 j RLO RL7

RS | IS o| | (r«| h o|
R9 | I 1 R»|

R10 J I
) RQ8 j RIO J

Rt 1 | J I j RI1 |
R12 I "1 RRI2 (""I-----------

i R13 I 1 I Ril|
R1[i_L SYSTEM STACK POINTER (SEC. NO.)

NORMAL STACK POINTER <SEG.' NO.) (NSPSEQI V
RQ12 | R« l -----------

RR14 |
R,5 |

R15
SYSTEM STACK POINTER (OFFSET)

NORMAL STACK POINTER (OFFSETI (NSPOFF) - H

\ R1S' |

I H
SYSTEM STACK POINTER
NORMAL STACK POINTER (NSP)

Z8001 General Purpose Registers Z8002 General Purpose Registers

Register Binary Hex
RQO RRO RO RHO 0000 0

R1 RH1 0001 1
RR2 R2 RH2 0010 2

R3 RH3 0011 3
RQ4 RR4 R4 RH4 0100 4

R5 RHS 0101 5
RR6 R6 RH6 0110 6

R7 RH7 0111 7
RQ8 RR8 R8 RLO 1000 8

R9 RLI 1001 9
RR10 RIO RL2 1010 A

Rli RL3 1011 B
RQ12 RR12 R12 RL4 1100 C

R13 RL5 1101 D
RR14 R14 RL6 1110 E

R15 RL7 1 1 1 1 F

Binary Encoding for Register Fields

Z8002 Z8001

SYSTEM STACK
POINTER AFTER
TRAP OR '
INTERRUPT

SYSTEM STACK
POINTER BEFORE
TRAP OR
INTERRUPT

IDENTIFIER

FCW

PC

LOW
ADDRESS

SYSTEM SP ■
AFTER TRAP
OR INTERRUPT

SYSTEM SP
BEFORE TRAP
OR INTERRUPT

LOW
ADDRESS

IDENTIFIER

FCW

PC SEGMENT

PC OFFSET

1 WORD WORD —►
HIGH
ADDRESS

HIGH
ADORESS

Format oi Saved Program Status in the System Stack

187

CONTROL BITS

NONSEGMENTED

PROGRAM COUNTER OFFSET

Program Status Blocks

PROGRAM STATUS AREA
POINTER (PSAP)

1 SEG. NO.) | UPPER | _ O a ..^ j
OFFSET IMPLIED

BYTE OFFSET
HEX DECIMAL

RESERVED

RESERVED
EXTENDED

INSTRUCTION
TRAP

FCW
FCW

|SEG | 7 PC
PC OFFSET
RESERVED FCW

FCW PRIVILEGED
INSTRUCTION

TRAP1 SEG |
PC OFFSET

PC

RESERVED
.SYSTEM

CALL
TRAP

FCW
FCW

| s e g | PC
PC OFFSET
RESERVED

FCW SEGMENT NOT USED1 SEG | TRAP
PC OFFSET
RESERVED FCW

FCW NONMASKABLE
1 SEG | INTERRUPT

PC
PC OFFSET
RESERVED FCW

FCW NONVECTORED
1 SEG | INTERRUPT

PC
PC OFFSET
RESERVED FCW

FCW
1SEG| ' PC,
PC OFFSET

_ 1 SEG| PC2
PC2 OFFSET VECTORED

J s e g | INTERRUPTS
PC3

PC3 OFFSET

l
;

I SEG | PCn
PC„ OFFSET

BYTE OFFSET
DECIMAL HEX

Program Status Area

188

Condition Codes

Code Meaning Flag Setting Binary
F Always false* 0000

Always true 1000
Z Zero Z = 1 0110
NZ Not zero Z = 0 1110
C Carry C = 1 0111
NC No carry 0 = 0 mi
PL Plus S = 0 1101
MI Minus S = 1 0101
NE Not equal Z = 0 1110
EQ Equal Z = 1 0110
OV Overflow V = 1 0100
NOV No overflow V = 0 1100
PE Parity even p = 1 0100
PO Parity odd P = 0 1100
GE Greater than

or equal
(S XOR V) = 0 1001

LT Less than (S XOR V) = 1 0001
GT Greater than (Z OR (S XOR V)) = 0 1010
LE Less than or

equal
(Z OR (S XOR V)) = 1 0010

UGE Unsigned
greater than
or equal

O n o mi
ULT Unsigned

less than
C = 1 0111

UGT Unsigned
greater than

((C =0) AND (Z = 0)) = 1 ion
ULE Unsigned less

than or equal
(C OR Z) = 1 0011

This table provides the condition codes and the flag settings they represent.
Note that some of the condition codes correspond to identical flag settings: i.e .f Z-EQ, NZ-NE,
NC-UGE, PE-OV, PO-NOV.

‘ Presently not implemented in PLZ/ASM Z8000 compiler.

7 6 5 4 3 2__ 1 __ 0

15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

Address n

1 I 1...- 1 . - J— l„ l, I .1

Address n (even) Address n + 1
J ̂ t UPPER BYTE , | , LOWER BYTE

BITS IN A BYTE

BITS IN A WORD

BYTE

WORD

Address n Address n + 1
I UPPER WORD/UPPER BYTE I
I___l— J___I______I____I___ I____ I------ 1------1-------1--- 1_____ I------1-------1-----l_
Address n + 2_______________ Address n + 3

J LOWER WORD/LOWER BYTE
■ ■__I______I____I___ I____ I------ 1------1-------1--- 1-------- 1------1-------1-----L.

Addressable Data Elements

189

Z8000 Addressing Modes

Addressing Mode Operand Addressing Operand Value

In the Instruction In a Register In Memory

B
Register F G

The content oi the
register

IM
Immediate I OPEWANO 1 In the Instruction

*IR
Indirect
Register H , The content oi the location

address 1 ■ ------ ► operand I whose address Is In the

-------------- 1 1-------------- 1 register

DA
The content of the location

operand I whose address Is In the
1 instruction

Direct | address

Address

‘X

Index
REGISTER ADDRESS

BASE ADDRESS
H

The content ol the loca
tion whose address is the
address in the instruction
plus the content oi the
working register.

The content oi the location

another register.

*Do not use RO or RRO as indirect, index, or base registers.

Powers of 2 and 16

2“ n
256 8
512 9

1 024 10
2 048 11
4 096 12
8 192 13

16 384 14
32 768 15
65 536 16

131 072 17
262 144 18
524 288 19

1 048 576 20
2 097 152 21
4 194 304 22
8 388 608 23

16 777 216 24

Powers of 2

16“ n
2° = 16° 1 0
24 = 16' 16 1
28 = 162 256 2
212 = 163 4 096 3
216 = 16* 65 536 4
220 = 16s 1 048 576 5
2* = 166 16 777 216 6
2* _ 167 268 435 456 7
2E _ 168 4 294 967 296 8
2* 169 68 719 476 736 9
2*° _ 1610 1 099 511 627 776 10
2** _ 16" 17 592 186 044 416 11
2« _ 1612 281 474 976 710 656 12
2= _ 1611 4 503 599 627 370 496 13
2“ _ 16‘* 72 057 594 037 927 936 14
2® = 1615 1 152 921 504 606 846 976 15

Powers oi 16

190

8 7 6 5 4 3 2 1

Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 268,435,456 1 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1

2 536,870,912 2 33,554,432 2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2

3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4

5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5

6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6

7 1,879,048,192 7 117,440,512 7- 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7

8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8

9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9

A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

C 3,221,225,472 C 201,326,592 C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12

D 3,489,660,928 D 218,103,808 D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14

F 4,026,531.840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

8 7 6 5 4 3 2 1

Hexadecimal and Decimal Interger Conversion Table

To Convert Hexadecimal to Decimal
1. Locate the column of decimal numbers corresponding to

the left-most digit or letter of the hexadecimal: select
from this column and record the number that cor
responds to the position of the hexadecimal digit or
letter.

2. Repeat step 1 for the units (second from the left)
position. ’

3. Repeat step 1 for the units (third from the left) position.
4. Add the numbers selected from the table to form the

decimal number.
To convert integer numbers greater than the capacity of
the table, use the techniques below:

To Convert Decimal to Hexadecimal
1. (a) Select from the tabel the highest decimal number

that is equal to ô less than the number to be
converted.

(b) Record the hexadecimal of the column containing
the selected number. ' .

(c) Subtract the selected decimal from the number to be
converted.

2. Using the remainder from step 1(c) repeat all of step 1
to develop the second position of the hexadecimal (and
a remainder).

3. Using the remainder from step 2 repeat all of step 1 to
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

Hexadecimal to Decimal
Succesive cumulative mulitplication from left to right,
adding units position.
Exam ple: D3416 = 33 80 j o
D = 13

x 16
208

3 = -1-13
211
x 16
3376

4 = _ + 4
3380

Example:
Conversion oi

Hexadecimal Value
D34

1. D 3328

2. 3 48

3. 4 ___6

4. Decimal 3380

Decimal to Hexadecimal
Divide and collect the remainder in reverse order
Examp fc: 33801o = D34ig Example:
1613380 remainder

^ 4211

13 l. D

Conversion oi
Decimal Value

3380

- 3328
52

-4 8

3. 4 - 4

4. Hexadecimal D34

191

ASCII Characters

Hexadecimal Character Meaning Hexadecimal Character

00
01
02
03

------- 04
05
06
07

--------08
09
0A
OB

------- 0C
OD
OE
OF

----- 10
11
12
13

------- 14
15
16
17

--------18
19
1A
IB

--------1C
ID
IE
IF

------- 20
21
22
23

------- 24
25
26
27

------- 28
29
2A
2B

------- 2C
2D
2E
2F

------- 30
31
32
33

--------34
35
36

■ 37
--------38

39
3A
3B

------ 3C
3D
3E
3F

NUL NULL Character 40
SOH Start of Heading 41
STX Start of Text 42
ETX End of Text 43
EOT -------End of Transmission --------------------------------- 44
ENQ Enquiry 45
ACK Acknowledge 46
BEL Bell 47
B S -------- Backspace --- 1— 48
HT Horizontal Tabulation 49
LF Line Feed 4A
VT Vertical Tabulation 4B
F F -------- Form Feed ---4C
CR Carriage Return 4D
5 0 Shift Out 4E
51 Shift In 4F

DLE------- Data Link Escape -------------- :--------------------- 50
DC1 Device Control 1 51
DC2 Device Control 2 52
DC3 Device Control 3 53
DC4 -------Device Control 4 --------------------------------------- 54
NAK Negative Acknowledge 55
SYN Synchronous Idle 56
ETB End of Transmission Block 57
CAN------- Cancel . -------------------- :----------------------------- 58
EM End of Medium 59

SUB Substitute 5A
ESC Escape 5B
FS --------File Separator -- 5C
GS Group Separator 5D
RS Record Separator 5E
US Unit Separator 5F
S P -------- Space ---60

! 61
" 62
63
$ --- 64
% 65
& 66
' 67

, (-- 68
) 69
‘ • 6A
+ 6B
' --- 6C
- 6D
. 6E
/ ' 6F
0 -- 70
1 -71
2 72
3 73

. 4 --------------------------------------- 74
5 75
6 76
7 • 77

■ 8 --- 78
9 79
: 7A
; 7B

■ < -- 7C
= 7D
> 7E
? 7F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

b
c

- d ----------------
e
f
g

. h -----------
i
)
k

- 1 -----------
m
n
o

■ p ----------------
q
r
s

- t ----------------
u
V
w
X ----------------------

y
z
{

. , ----------------------

}
DEL Delete

192

