

Dual-SIM Card Power Supply with Level Translator and Dedicated Dual LDO

Check for Samples: TXS4558

FEATURES

- Level Translator
 - V_{CC} Range of 1.65 V to 3.3 V
 - V_{BATT} Range of 2.3V to 5.5V
- · Low-Dropout (LDO) Regulator
 - 50-mA LDO Regulator With Enable
 - 1.8-V or 2.95-V Selectable Output Voltage
 - Very Low Dropout: 100 mV (Max) at 50 mA
- Control and Communication Through GPIO Interface with Baseband Processor
- Isolated Clock Stop Mode for both SIM1 and SIM2 cards
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-B)
 - 500-V Charged-Device Model (C101)
 - 8kV HBM for SIM pins
- Package
 - 20-Pin QFN (3 mm x 3 mm)

NOTE: Exposed center thermal pad must be electrically connected to Ground.

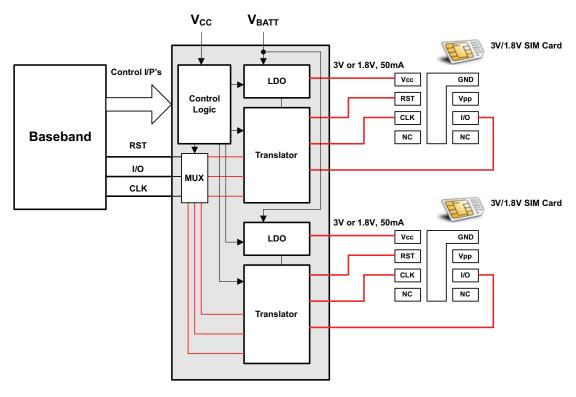
DESCRIPTION

The TXS4558 is a complete dual-supply standby Smart Identity Module (SIM) card solution for interfacing wireless baseband processors with two individual SIM subscriber cards to store data for mobile handset applications. It is a custom device which is used to extend a single SIM/UICC interface to be able to support two SIM's/UICC's.

The device complies with ISO/IEC Smart-Card Interface requirements as well as GSM and 3G mobile standards. It includes a high-speed level translator capable of supporting Class-B (2.95 V) and Class-C (1.8 V) interfaces, two low-dropout (LDO) voltage regulators that have output voltages that are selectable between 2.95-V Class-B and 1.8-V Class-C interfaces. Simple GPIO inputs are used to switch between the two SIM cards and to put it into different modes. The voltage-level translator has two supply voltage pins. VCC sets the reference for the baseband interface and can be operated from 1.65 V to 3.3 V. VSIM1 and VSIM2 are programmed to either 1.8 V or 2.95 V, each supplied by an independent internal LDO regulator. The integrated LDO accepts input battery voltages from 2.3 V to 5.5 V and outputs up to 50 mA to the B-side circuitry and external Class-B or Class-C SIM card.

The TXS4558 also incorporates shutdown sequence for the SIM card pins based on the ISO 7816-3 specification for SIM cards. The device also has 8kV HBM protection for the SIM card pins and standard 2kV HBM protection for all the other pins.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION⁽¹⁾

T _A	PACKAG	PACKAGE ⁽²⁾		TOP-SIDE MARKING
-40°C to 85°C	QFN – RUK	Tape and reel	TXS4558RUKR	ZTG

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

INTERFACING THE SIM CARD

PIN FUNCTIONS(1)

NO.	NAME	TYPE ⁽²⁾	POWER DOMAIN	DESCRIPTION
1	VSIM2	0	V _{BATT}	1.8 V/2.95 V supply voltage to SIM2
2	V _{CC}	Р	_	1.8-V power supply for device operation and I/O buffers toward baseband
3	V_{BATT}	Р	_	Battery power supply
4	VSIM1	0	VBATT	1.8 V/2.95 V supply voltage to SIM1
5	SIM1CLK	0	VSIM1	SIM1 clock
6	SIM1RST	0	VSIM1	SIM1 reset
7	SIM1I/O	I/O	VSIM1	SIM1 data
8	I/O	I/O	V _{CC}	UICC/SIM data
9	RST	I	V _{CC}	UICC/SIM reset from baseband
10	CLK	I	V _{CC}	UICC/SIM clock
11	EN1	I	V _{CC}	Enable pin for SIM1 interface
12	VSEL1	I	V _{CC}	Select pin for 1.8V or 2.95V LDO1 output
13	CSEL	I	V _{CC}	Channel select between SIM1 or SIM2

- (1) Thermal Pad must be electrically connected to Ground Plane.
- (2) G = Ground, I = Input, O = Output, P = Power

PIN FUNCTIONS⁽¹⁾ (continued)

NO.	NAME	TYPE(2)	POWER DOMAIN	DESCRIPTION
14	CLKRUN1	I	V _{CC}	Select pin for SIM1 Clock stop mode
15	CLKRUN2	I	V _{CC}	Select pin for SIM2 Clock stop mode
16	VSEL2	I	V _{CC}	Select pin for 1.8V or 2.95V LDO2 output
17	EN2	I	V _{CC}	Enable pin for SIM2 interface
18	SIM2I/O	I/O	VSIM2	SIM2 data
19	SIM2RST	0	VSIM2	SIM2 reset
20	SIM2CLK	0	VSIM2	SIM2 clock

TRUTH TABLE

CSEL	VSEL1	VSEL2	SELECTED CARD	VSIM1	VSIM2
0	0	0	1	1.8 V	1.8 V
0	0	1	1	1.8 V	2.95 V
0	1	0	1	2.95 V	1.8 V
0	1	1	1	2.95 V	2.95 V
1	0	0	2	1.8 V	1.8 V
1	0	1	2	1.8 V	2.95 V
1	1	0	2	2.95 V	1.8 V
1	1	1	2	2.95 V	2.95 V

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
LEVE	L TRANSLATOR			·	
VCC	Supply voltage range		-0.3	4.0	V
		VCC-port	-0.5	4.6	
V_{I}	Input voltage range	VSIMx-port	-0.5	4.6	V
		Control inputs	-0.5	4.6	
		VCC-port	-0.5	4.6	
Vo	Voltage range applied to any output in the high-impedance or power-off state	VSIMx-port	-0.5	4.6	V
	power-on state	Control inputs	-0.5	4.6	
	Voltage range applied to any output in the high or low state	VCC-port	-0.5	4.6	
V _O		VSIMx-port	-0.5	4.6	V
		Control inputs	-0.5	4.6	
I _{IK}	Input clamp current	V _I < 0		-50	mA
lok	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current		±50		mA
	Continuous current through VCCA or GND		±100		mA
T _{stg}	Storage temperature range		-65	150	°C
LDO			•	·	
V_{BAT}	Input voltage range		-0.3	6	V
V _{OUT}	Output voltage range		-0.3	6	V
T _J	Junction temperature range		-55	150	°C
T _{stg}	Storage temperature range		-55	150	°C
	CCD rating (host side)	Human-Body Model (HBM)		2	kV
	ESD rating (host side)	Charged-Device Model (CDM)		500	V

Product Folder Link(s): TXS4558

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT		
LEVEL TRANSLATOR							
VCC	Supply voltage		1.7	3.3	V		
V_{IH}	High-level input voltage	Applies to pins: EN1, EN2,RST, CLK, I/O, CLKRUN1,	VCC × 0.7	3.3	V		
V_{IL}	Low-level input voltage	CLKRUN2, VSEL1, VSEL2, CSEL	0	VCC × 0.3	V		
Δt/Δν	Δt/Δv Input transition rise or fall rate			5	ns/V		
T _A	Operating free-air temperature			85	°C		

⁽¹⁾ All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS — LEVEL TRANSLATOR

over recommended operating free-air temperature range (unless otherwise noted)

P.	ARAMETER	TEST CONDITIONS	VCC	VSIM1	VSIM2	MIN	TYP ⁽¹⁾	MAX	UNIT		
	SIM1_RST	L 400 v.A. Bush Bull				VSIM1 × 0.8					
	SIM1_CLK	I _{OH} = −100 μA, Push-Pull				VSIM1 × 0.8					
	SIM1_I/O	I _{OH} = -10 μA, Open-Drain				VSIM1 × 0.8					
V_{OH}	SIM2_RST	- I _{OH} = –100 μA, Push-Pull	1.7 V to 3.3 V	1.8 V / 2.95 V, (Supplied by LDO)	1.8 V / 2.95 V, (Supplied by LDO)	VSIM2 × 0.8			V		
	SIM2_CLK	I _{OH} = -100 μA, Push-Pull		(Cupplied by EDO)	(Guppiica by EBG)	VSIM2 × 0.8					
	SIM2_I/O	I _{OH} = -10 μA, Open-Drain			VSIM2 × 0.8						
	I/O	I _{OH} = -10 μA, Open-Drain				VCC × 0.8					
	SIM1_RST I _{OL}	I _{OI} = 1 mA, Push-Pull					VS	SIM1 × 0.2			
		I _{OL} = 1 mA, Push-Pull		7 V to 3 3 V			VS	SIM1 × 0.2			
	SIM1_I/O	I _{OL} = 1 mA, Open-Drain	1.7 V to 3.3 V				0.3	1			
V_{OL}	SIM2_RST	I _{OI} = 1 mA, Push-Pull			1.8 V / 2.95 V (Supplied by LDO)		VS	SIM2 × 0.2	V		
	SIM2_CLK	I _{OL} = I mA, Push-Pull		(Cupplied by EDO)			VSIM2 × 0.2				
	SIM2_I/O	I _{OL} = 1 mA, Open-Drain							0.3	ļ	
	I/O	I _{OL} = 1 mA, Open-Drain						0.3			
l _l	Control inputs	V _I = EN1,EN2, CLKRUN1, CSEL, CLKRUN2, VSEL1, VSEL2,	1.7 V to 3.3 V	1.8 V / 2.95 V (Supplied by LDO)	1.8 V / 2.95 V (Supplied by LDO)			±1	μΑ		
I _{CC I/O}		V _I = V _{CCI} , I _O = 0	1.7 V to 3.3 V	1.8 V / 2.95 V (Supplied by LDO)	1.8 V / 2.95 V (Supplied by LDO)			±5	μΑ		
0	SIM_I/O port						8				
C _{io}	VSIMx port						8		pF		
C _i	Control inputs	V _I = VCC or GND					4		pF		

⁽¹⁾ All typical values are at $T_A = 25$ °C.

LDO ELECTRICAL CHARACTERISTICS

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS			MAX	UNIT
VBAT	Input voltage			2.3		5.5	V
V	Output valtage	Class-B Mode , 0 mA < I _{SIM1,2} < 50 mA		2.85	2.95	3.05	V
V _{SIM1,2}	Output voltage	Class-C Mode , 0 mA < I _{SIM1,2} < 50 mA		1.7	1.8	1.9	\ \ \
V_{DO}	Dropout voltage	I _{OUT} = 50 mA				100	mV
I _{VBAT} Operating current		$V_{SIM1} = 2.95 \text{ V}, V_{SIM2} = 0, \text{ ISIM1} = 0 \mu\text{A}$			40	50	
		$V_{SIM1} = 1.8 \text{ V}, V_{SIM2} = 0, I_{SIM1} = 0 \mu\text{A}$			40	50	μA
I _{SHDN}	Shutdown current (IGND)	$V_{ENx} \le 0.4 \text{ V}, (VSIMx + V_{DO}) \le VBAT \le 5.5$	V, T _J = 85°C			1	μA
I _{OUT(SC)}	Short-circuit current	$R_L = 0 \Omega$			145		mA
C _{OUT}	Output Capacitor				1		μF
DODD	Daniel and a state of the state of the	V _{BAT} = 3.15 V, V _{SIM1,2} = 1.8 V or 2.95 V,	f = 1 kHz	50			-10
PSRR	Power-supply rejection ratio	$C_{OUT} = 1 \mu F$, $I_{OUT} = 10 \text{ mA}$ $f = 10 \text{ kHz}$		40			dB
T _{STR}	V _{SIM1,2} Start-up time	$V_{SIM1,2} = 1.8 \text{ V or } 3 \text{ V, } I_{OUT} = 50 \text{ mA, } C_{OUT} = 1 \mu\text{F}$				400	μS
TJ	Operating junction temperature			-40		125	°C

(1) All typical values are at $T_A = 25$ °C.

Product Folder Link(s): TXS4558

GENERAL ELECTRICAL CHARACTERISTICS

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{I/OPU}	I/O pull-up		16	20	24	kΩ
R _{SIMPU}	SIM_I/O pull-up	SIM enabled and selected with CSEL	7.4	8.0	8.7	kΩ
R _{SIMPD}	SIM_I/O pull-down	Active pull-downs are connected to the VSIM regulator output to the SIM_CLK, SIM_RST, SIM_I/O when EN = 0			2	kΩ

SWITCHING CHARACTERISTICS - VSIMx = 1.8 V or 2.95 V Supplied by Internal LDO

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	VCC = 1.8 V ±	0.15 V	LINUT
		TEST CONDITIONS	MIN	MAX	UNIT
t _{rA}	I/O			1	μs
	SIMx_RST			1	μs
t_{rB}	SIMx_CLK	0 50 75		50	ns
	SIMx_I/O	C _L = 50 pF		100	ns
f _{max}	SIMx_CLK			25	MHz
Duty Cycle	SIMx_CLK		40%	60%	

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{SIMx} = 1.8 \text{ V}$

	P.A	ARAMETER	TEST CONDITIONS	TYP	UNIT
	Class C (CLK, RST)	VCC-port input, VSIMx-port output		12.7	~F
O (1)	Class B (CLK, RST)	VCC-port input, VSIMx-port output	$C_L = 0$	15.4	pF
C _{pd} ⁽¹⁾	CLASS C (IO)	VCC-port input, VSIMx-port output	$f = 5 \text{ MHz}$ $t_r = t_f = 1 \text{ ns}$	10.8	
	CLASS B (IO)	VCC-port input, VSIMx-port output		20.3	pF

(1) Power dissipation capacitance per transceiver

PIN FUNCTION

PIN NAME	PIN NUMBER	PIN FUNCTION
VCC	2	Power supply and voltage reference for device operation and I/O buffers toward baseband.
VBATT	3	This is the battery power supply for the TXS4558.
VSIM1, VSIM2	1,4	1.8 V/2.95 V supply voltage for the respective SIM1 and SIM2. These outputs are activated through the EN1 and EN2 pins and set to be 1.8V or 2.95V through VSEL1 and VSEL2.
SIMCLK, SIM2CLK	5, 20	These are voltage level shifted CLK signals for connection to SIM1 and SIM2. Functionality while the corresponding SIM is not selected via CSEL is controlled by CLKRUN1 and CLKRUN2 control pins.
SIM1RST, SIM2RST	6, 19	These are voltage level shifted RST signals for connection to SIM1 and SIM2. Their output level when de-selected is latched at the last state.
SIM1IO, SIM2IO	7, 18	These are voltage level shifted IO signals for connection to SIM1 and SIM2. These are bi-directional data signals.
Ю	8	Microcontroller side data IO pin. The IO pin provides the bidirectional communication path to the SIM cards. The SIMxIO communicating with IO is selected by CSEL.
RST	9	Microcontroller side reset RST pin input. RST provides signals directly to the selected SIM SIMxRST. When a SIM interface is deselected with CSEL, the last RST value is held at the SIMxRST.
CLK	10	The CLK pin supplies the clock signal to the cards. It is level shifted and transmitted directly to the SIMxCLK pin of the selected card. If CLKRUNx is HIGH, the clock signal will be transmitted to the SIMxCLK pin, regardless of whether that card is selected.
EN1, EN2	11, 17	EN1 and EN2 enable and disable the power supply to SIM1 and SIM2, and the corresponding interface.
VSEL1, VSEL2	12, 16	These pins set the VSIM1 and VSIM2 voltages and the corresponding interface IO voltages. When VSELx is low, VSIMx is 1.8V. When VSELx is high, VSIMx is 2.95V.
CSEL	13	CSEL selects which SIM is activated and communicates with the baseband. When CSEL is low, SIM1 is active. When CSEL is high, SIM2 is active.
CLKRUN1, CLKRUN2	14, 15	The CLKRUN1 and CLKRUN2 control the functionality of the SIM1CLK and SIM2CLK pins when their corresponding SIM cards are deselected using CSEL. When CLKRUNx is high, the CLK signal is transmitted to the corresponding SIMxCLK, even when the card is deselected with CSEL. When CLKRUNx is low, the SIMxCLK signal is brought low when the corresponding SIM is deselected with CSEL.
Exposed Center Pad	21	This center pad must be connected to ground.

OPERATION

Clock Run Mode

SIMS have varying requirements for the SIM CLK. Using CLKRUN, the user can decide if the SIMxCLK pin continuously transmits the CLK signal, or is brought low when the SIM is deselected with CSEL. If CLKRUNx is LOW, the SIMxCLK is brought LOW two clock cycles after the SIMx is deselected with CSEL. If SIMxCLK is high, the CLK transmits to the SIMxCLK, even if the SIMx is deselected with CSEL.

CSEL

When a channel is deselected using the CSEL pin, the SIMxRST state is latched, the SIMxIO becomes high impedance and SIMxCLK function is dependent on CLKRUNx.

Operation Activation/Deactivation

When the EN1, EN2 pin is brought high, the device performs the activation sequence for the corresponding SIM interface. Each SIM interface is activated independently based on its EN IO.

Activation Sequence

- 1. The device holds SIMxIO. SIMxCLK and SIMxRST low.
- 2. VSIMx is activated and powered.
- The device waits for the VSIMx output to reach the correct voltage. Once this voltage is reached, SIMxIO, and SIMxRST are enabled.
- 4. The SIMxCLK is activated on the 2nd rising edge after the SIMxIO is enabled.

When the ENx pin is brought low, the device performs the deactivation sequence for the corresponding SIM interface. Deactivation Sequence,

Deactivation Sequence

- 1. SIMxRST is deactivated and set low.
- 2. Two clock cycles after EN is brought LOW, the SIMxCLK is disabled and brought LOW. If the CLK is not active, SIMxCLK is disabled and brought low approximately 9us after ENx is brought low.
- 3. Approximately 9us after the ENx is brought LOW, SIMxIO is disabled and set LOW.
- 4. After SIMxIO is brought LOW, the VSIMx is deactivated and unpowered.

APPLICATION INFORMATION

The LDO's included on the TXS4558 achieve ultra-wide bandwidth and high loop gain, resulting in extremely high PSRR at very low headroom ($V_{BAT} - V_{SIM1/2}$). The TXS4558 provides fixed regulation at 1.8V or 2.95V. Low noise, GPIO enable and low ground pin current make it ideal for portable applications. The device offers current limit and thermal protection, and is fully specified from -40° C to 125°C.

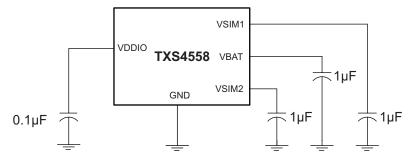


Figure 1. Typical Application Circuit for TXS4558

Input and Output Capacitor Requirements

It is good analog design practice to connect a 1.0 µF low equivalent series resistance (ESR) capacitor across the input supply (VBAT) near the regulator. Also, a 0.1µF is required for the logic core supply (VCC).

This capacitor will counteract reactive input sources and improve transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated or if the device is located several inches from the power source. The LDO's are designed to be stable with standard ceramic capacitors of values 1.0 μ F or larger. X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over temperature. Maximum ESR should be <1.0 Ω .

Output Noise

In most LDO's, the bandgap is the dominant noise source. To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the board be designed with separate ground planes for VIN and VOUT, with each ground plane connected only at the GND pin of the device. In addition, the ground connection for the bypass capacitor should connect directly to the GND pin of the device.

Internal Curent Limit

The TXS4558 internal current limit helps protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of output voltage. For reliable operation, the device should not be operated in a current limit state for extended periods of time.

The PMOS pass element in the TXS4558 has a built-in body diode that conducts current when the voltage at VSIM1/2 exceeds the voltage at VBAT. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting may be appropriate.

Dropout Voltage

The TXS4558 uses a PMOS pass transistor to achieve low dropout. When $(V_{BAT} - V_{SIM1/2})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in its linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO} will approximately scale with output current because the PMOS device behaves like a resistor in dropout.

Startup

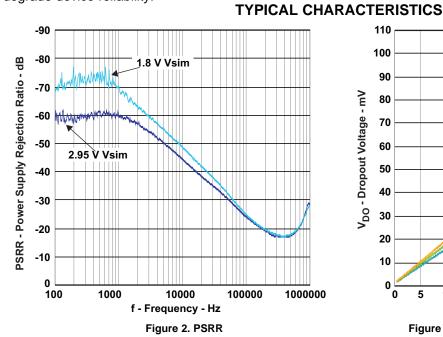
The TXS4558 uses a quick-start circuit which allows the combination of very low output noise and fast start-up times.

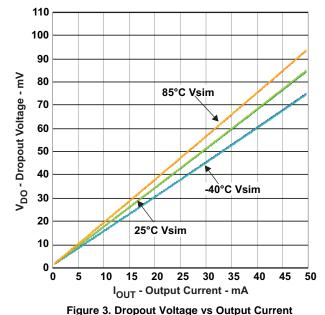
Transient Response

As with any regulator, increasing the size of the output capacitor reduces over/undershoot magnitude but increases duration of the transient response.

Minimum Load

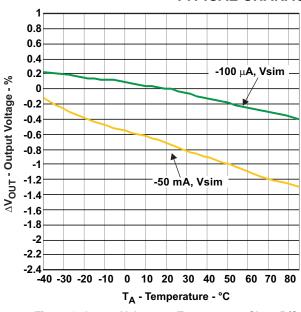
The TXS4558 is stable and well-behaved with no output load. Traditional PMOS LDO regulators suffer from lower loop gain at very light output loads. The TXS4558 employs an innovative low-current mode circuit to increase loop gain under very light or no-load conditions, resulting in improved output voltage regulation performance down to zero output current.

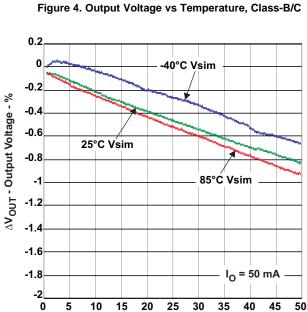

THERMAL INFORMATION


Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately +160°C, allowing the device to cool. When the junction temperature cools to approximately +140°C the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage because of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heat sink. For reliable operation, junction temperature should be limited to +125°C maximum. To estimate the margin of safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. For good reliability, thermal protection should trigger at least +35°C above the maximum expected ambient condition of your particular application. This configuration produces a worst-case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.


The internal protection circuitry of the TXS4558 has been designed to protect against overload conditions. It was not intended to replace proper heat sinking. Continuously running the TXS4558 into thermal shutdown will degrade device reliability.



rigure 3. Dropout voltage vs Output Curren

TYPICAL CHARACTERISTICS (continued)

I_{OUT} - Output Current - mA Figure 6. Load Regulation, lout = 50 mA, Class-B

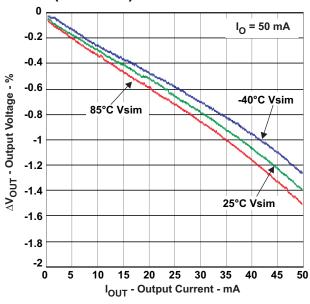


Figure 5. Load Regulation, lout = 50 mA, Class-C

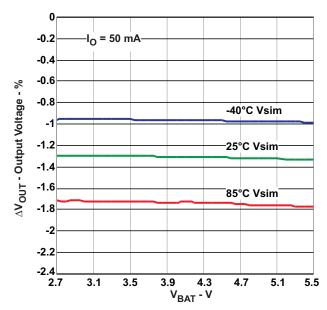
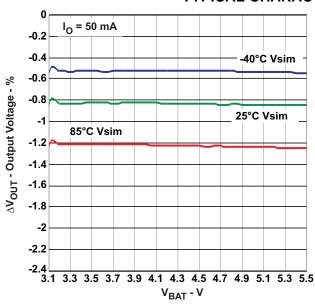



Figure 7. Line Regulation, lout = 50 mA, Class-C

TYPICAL CHARACTERISTICS (continued)

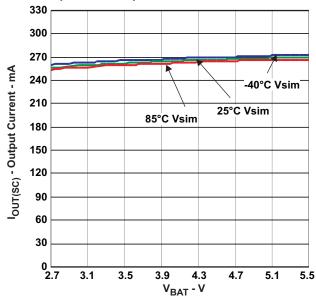
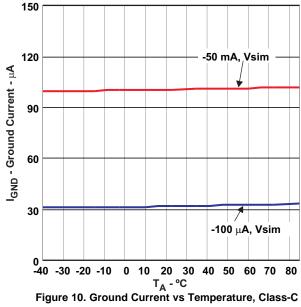



Figure 8. Line Regulation, lout = 50 mA, Class-B

Figure 9. Current Limit vs Input Voltage, Class-B/C

PACKAGE OPTION ADDENDUM

24-.lan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	U		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
TXS4558RUKR	ACTIVE	WQFN	RUK	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	ZTG	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

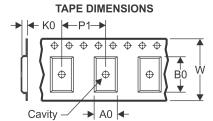
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

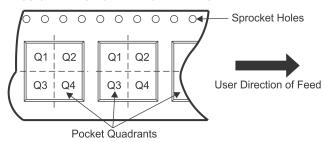
(4) Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

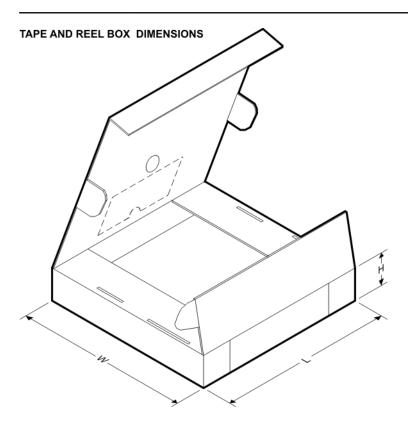

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013


TAPE AND REEL INFORMATION

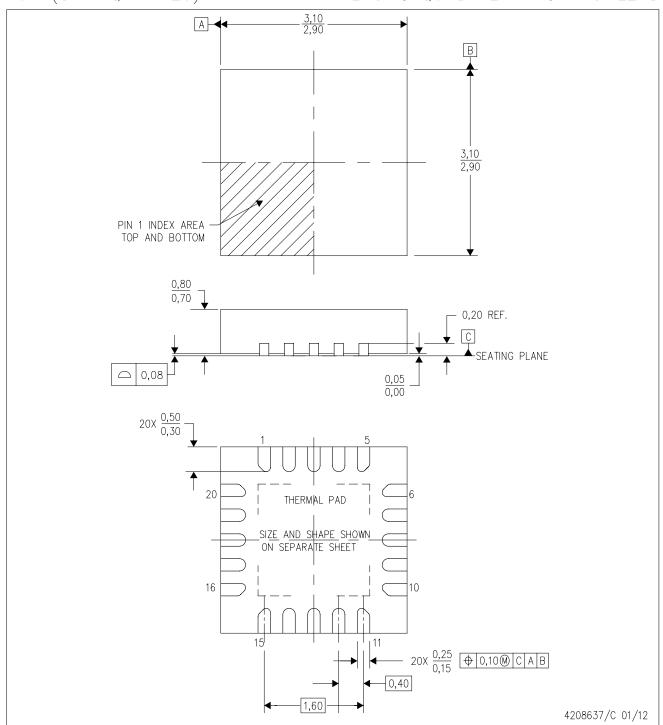
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS4558RUKR	WQFN	RUK	20	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 26-Jan-2013



*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TXS4558RUKR	WQFN	RUK	20	3000	367.0	367.0	35.0	

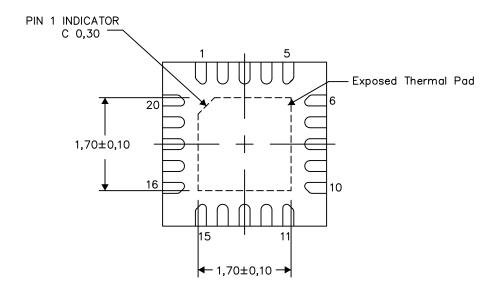
RUK (S-PWQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RUK (S-PWQFN-N20)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

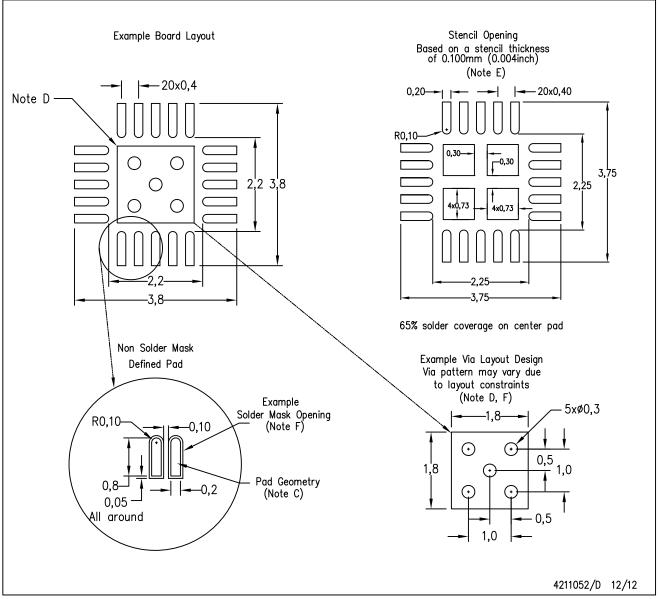
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4209762/E 12/12

NOTE: All linear dimensions are in millimeters

RUK (S-PWQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>