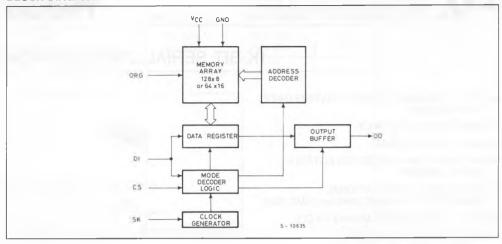

# 1K BIT SERIAL CMOS EEPROM

- HIGHLY RELIABLE CMOS FLOATING GATE TECHNOLOGY.
- SINGLE 5-VOLT SUPPLY
- EIGHT PIN PACKAGE.
- 64×16 OR 128×8 USER SELECTABLE SERIAL MEMORY
- COMPATIBLE WITH NATIONAL SEMICONDUCTOR NMC 9346 and NMC 9306
- SELF TIMED PROGRAMMING CYCLE.
- WORD AND CHIP ERASABLE
- 10,000 ERASE/WRITE CYCLES.
- TEN YEARS DATA RETENTION
- POWER-ON DATA PROTECTION

## PIN NAMES

| CS  | CHIP SELECT        |
|-----|--------------------|
| SK  | CLOCK INPUT        |
| DI  | SERIAL DATA INPUT  |
| DO  | SERIAL DATA OUTPUT |
| ORG | ORGANIZATION INPUT |
| Vcc | +5V POWER SUPPLY   |
| GND | GROUND             |
| NC  | NO CONNECT         |






## PIN DESCRIPTION

| Name | Description |                                                                                                                                                                                                                                                                                                                                  |
|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS   | 1           | Chip Select                                                                                                                                                                                                                                                                                                                      |
| SK   | 2           | Clock Input                                                                                                                                                                                                                                                                                                                      |
| DI   | 3           | Serial Data Input                                                                                                                                                                                                                                                                                                                |
| DO   | 4           | Serial Data Output                                                                                                                                                                                                                                                                                                               |
| GND  | 5           | Ground                                                                                                                                                                                                                                                                                                                           |
| ORG  | 6           | Memory Array Organization Selection Input. When the ORG pin is connected to $\pm 5$ , the $64 \times 16$ organization is selected. When it is connected to ground, the $128 \times 8$ organization is selected. If the ORG pin is left unconnected, then an internal pull up device will select the $64 \times 16$ organization. |
| Vcc  | 8           | +5V Power Supply                                                                                                                                                                                                                                                                                                                 |

#### **BLOCK DIAGRAM**



### **INSTRUCTION SET**

|             |           |        | Address                        |                                | Data                           |                                 | 0                                            |
|-------------|-----------|--------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|----------------------------------------------|
| Instruction | Start bit | Opcode | 128 × 8                        | 64 × 16                        | 128×8                          | 64 x 16                         | Comments                                     |
| READ        | 1         | 10     | A <sub>6</sub> -A <sub>0</sub> | A <sub>5</sub> -A <sub>0</sub> |                                |                                 | Read Address A <sub>N</sub> -A <sub>O</sub>  |
| ERASE       | 1         | 11     | A <sub>6</sub> -A <sub>0</sub> | A <sub>5</sub> -A <sub>0</sub> |                                |                                 | Erase Address A <sub>N</sub> -A <sub>0</sub> |
| WRITE*      | 1         | 01     | A <sub>6</sub> -A <sub>0</sub> | A <sub>5</sub> -A <sub>0</sub> | D <sub>7</sub> -D <sub>0</sub> | D <sub>15</sub> -D <sub>0</sub> | Write Address A <sub>N</sub> -A <sub>0</sub> |
| EWEN        | 1         | 00     | 11xxxxx                        | 11xxxx                         |                                |                                 | Program Enable                               |
| EWDS        | 1         | 00     | 00xxxxx                        | 00xxxx                         |                                |                                 | Program Disable                              |
| ERAL        | 1         | 00     | 10xxxxx                        | 10xxxx                         |                                |                                 | Erase All Addresses                          |
| WRAL        | 1         | 00     | 01xxxxx                        | 01xxxx                         | D <sub>7</sub> -D <sub>0</sub> | D15-D <sub>0</sub>              | Program All Addresses                        |

<sup>\*</sup> Write instruction is a self timed program instruction. The selected byte (word) gets erased before being written.

DI/DO: It is possible to connect the Data In and Data Out pins together. However, with this configuration it si possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A<sub>0</sub> is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A<sub>0</sub>. The higher the current sourcing capability

of A<sub>0</sub>, the higher the voltage at the Data Out pin.

POWER-ON DATA PROTECTION CIRCUITRY: During power-up all modes of operation are inhibited until V<sub>CC</sub> has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V<sub>CC</sub> has fallen below the voltage range of 2.8 to 3.5 volts.

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                | Value                            | Unit |
|------------------|------------------------------------------|----------------------------------|------|
| Vcc              | Supply voltage                           | +7                               | V    |
|                  | Voltage on any input pin                 | GND - 0.3 to +7                  | V    |
|                  | Voltage or any output pin                | V <sub>CC</sub> +0.3<br>GND -0.3 | V    |
| T <sub>STG</sub> | Storage temperature range                | - 65 to + 150                    | °C   |
|                  | Lead temperature (Soldering: 10 seconds) | + 300                            | °C   |

# **READ OPERATION**

# DC CHARACTERISTICS

 $(T_{amb} = 0^{\circ} \text{ to } 70^{\circ}\text{C for CP}, T_{amb} = -40 \text{ to } +85^{\circ}\text{C for VP}, V_{CC} = 5\text{V} \pm 10\%$ ; Unless otherwise specified)

| Symbol           | Parameter              | Test Conditions                                                      | Values |      |                    |     |
|------------------|------------------------|----------------------------------------------------------------------|--------|------|--------------------|-----|
|                  |                        |                                                                      | Min.   | Тур. | Max.               | Uni |
| V <sub>CC</sub>  | Operating voltage      |                                                                      | 4.5    |      | 5.5                | V   |
| I <sub>CC1</sub> | Operating current      | V <sub>CC</sub> = 5.5V, CS = V <sub>IH</sub><br>CP range<br>VP range |        |      | 4 4                | mA  |
| I <sub>CC2</sub> | Standby current        | V <sub>CC</sub> = 5.5V, CS = DI =<br>SK = GND + 0.1V)                |        |      | 100                | μА  |
| VIL              | Input low voltage      |                                                                      | - 0.1  |      | 0.8                | V   |
| V <sub>IH</sub>  | Input high voltage     |                                                                      | 2.0    |      | V <sub>CC</sub> +1 | V   |
| V <sub>OL</sub>  | Output low voltage     | I <sub>OL</sub> = 2.1mA                                              |        |      | 0.4                | V   |
| V <sub>OH</sub>  | Output high voltage    | I <sub>OH</sub> = − 400μA →                                          | 2.4    |      |                    | V   |
| ILI              | Input leakage current  | V <sub>in</sub> = 5.5V                                               |        |      | 10                 | μΑ  |
| ILO              | Output leakage current | V <sub>out</sub> = 5.5V, CS = 0                                      |        |      | 10                 | μΑ  |

## AC ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 0^{\circ} \text{ to } 70^{\circ}\text{C for CP } T_{amb} = -40 \text{ to } +85^{\circ}\text{C for VP}, V_{CC} = 5V \pm 10\%$ ; Unless otherwise specified)

| Symbol             | Parameter                    | Test Conditions                                                                                                      |      |      |            |      |
|--------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|------|------|------------|------|
|                    |                              |                                                                                                                      | Min. | Тур. | Max.       | Unit |
|                    | SK max (Maximum frequency)   |                                                                                                                      |      |      | 250        | KHz  |
|                    | SK duty cycle                |                                                                                                                      | 25   | 50   | 75         | %    |
| T <sub>CSS</sub>   | CS setup time                |                                                                                                                      | 0.2  |      |            | μS   |
| T <sub>CSH</sub>   | CS hold time                 |                                                                                                                      | 0    |      |            | μS   |
| T <sub>DIS</sub>   | DI Setup time                |                                                                                                                      | 0.4  |      |            | μS   |
| T <sub>DIH</sub>   | Data input hold time         |                                                                                                                      | 0.4  |      |            | μS   |
| T <sub>PD1</sub>   | Data output delay            | CL = 100pF, V <sub>OL</sub> = 0.8V,<br>V <sub>OH</sub> = 2.0V and<br>V <sub>IH</sub> = 2.4V, V <sub>IL</sub> = 0.45V |      |      | 2.0<br>2.0 | μS   |
| T <sub>HZ</sub>    | Output delay to Hi Z         |                                                                                                                      |      |      | 0.4        | μS   |
| TE/W               | Erase/write pulse width      |                                                                                                                      |      |      | 10         | ms   |
| T <sub>CS</sub>    | Min. CS low time             |                                                                                                                      | 1    |      |            | μS   |
| TSKHI              | SK high time                 |                                                                                                                      | 1    |      |            | μS   |
| T <sub>SKLOW</sub> | SK low time                  |                                                                                                                      | 1    |      |            | μS   |
| T <sub>SV</sub>    | Output delay to status valid |                                                                                                                      |      |      | 1          | μS   |

#### **DEVICE OPERATION**

The TS93C46 is a serial Eeprom memory featuring a software programmable organization:  $128 \times 8$  bit or  $64 \times 16$  bit. It has 7 instructions that allow it to read, erase or write.

Each instruction consists of a start bit (logical "1"), an opcode field (2 bits), an address field (6 or 7 bits) and optionally a data field (8 or 16 bits) — Address and data fields length depending on organization × 8 or × 16.

The DO pin is a multiplexed pin. It is used as data out during the read mode. It can also be used as a ready/busy indicator in programming mode. In all other modes, DO is tri-stated.

During power-up, all modes of operation are disabled, and the device comes up in a programdisabled state. An EWEN instruction has to be issued before starting programming.

## READ

The READ instruction reads the content of the addressed register. It outputs data serially on the DO pin. After the instruction is decoded, a dummy bit (logical "0") precedes the output data string.

## ERASE/WRITE ENABLE AND DISABLE

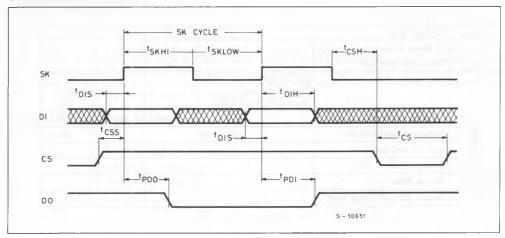
After power-up and before starting any programming instruction, the EWEN instruction has to be issued. Once it has been issued, it will remain active until an EWDS instruction takes place. The EWDS instruction is provided to avoid any accidental programming of the part. The read instruction is independent from the EWEN and EWDS instructions

#### **ERASE**

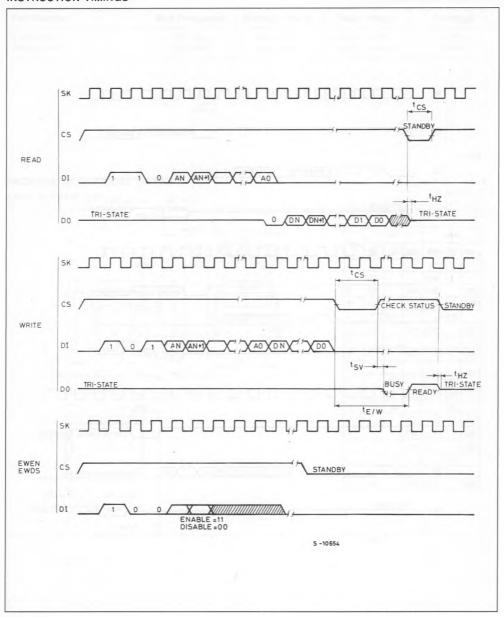
After an ERASE instruction has been shifted in, CS is dropped low. This will set the beginning of the self timed erase sequence. If CS is then brought high (after observing TCS spec), the DO pin will act as a status indicator. It will remain low as long as the chip is programming. It will go high after all the bits of the addressed register have been set to al logical "1".

## WRITE

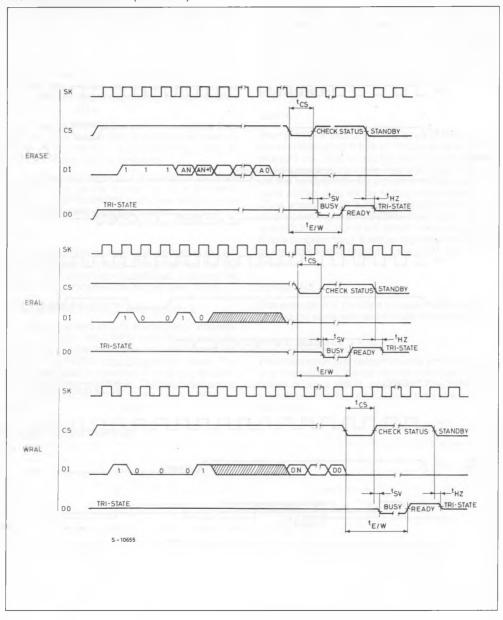
After a WRITE instruction has been shifted in with the corresponding 8 bits or 16 bits of data, CS is dropped low. This will set the beginning of the self timed programming cycle. The addressed register will first be automatically erased and then the previously shifted data will be written in the register. If CS is brought high during the programming time (after observing the TCS spec), the DO pin will act as a status indicator-it will remain low a long as the chip is programming. It will go high after all the bits of the addressed register have been set to the proper value.


#### **ERASE ALL**

This instruction is provided to erase the whole chip. It works the same way as the erase instruction does.


# WRITE ALL

This instruction is provided to write simultaneously all the registers. All the registers must be erased before doing a WRAL operation. The WRAL instruction works the same way as the write instruction does.

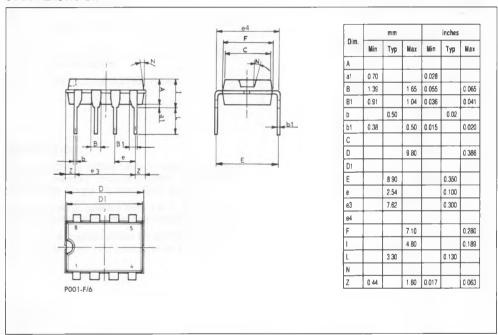

#### SYNCHRONOUS TIMINGS



## **INSTRUCTION TIMINGS**



# **INSTRUCTION TIMINGS** (Continued)




## ORDERING INFORMATION

| Part Number | Max Frequency | Supply Voltage | Temp. Range  | Package |
|-------------|---------------|----------------|--------------|---------|
| TS93C46CP   | 250 KHz       | 5V ± 10%       | 0 to +70°C   | DIP-8   |
| TS93C46VP   | 250 KHz       | 5V ± 10%       | -40 to +85°C | DIP-8   |

## PACKAGE MECHANICAL DATA

8-PIN PLASTIC DIP

