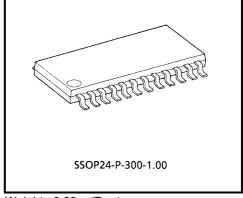
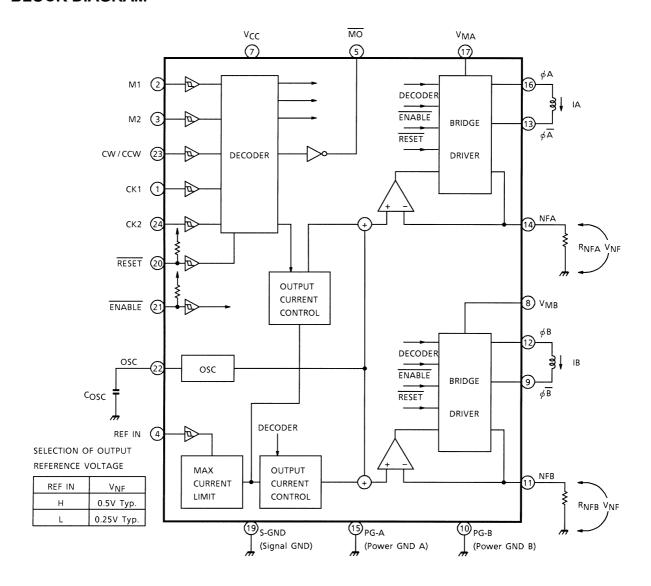
TOSHIBA BI-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB6504F


PWM CHOPPER TYPE BIPOLAR STEPPING MOTOR DRIVER

The TB6504F is PWM chopper type sinusoidal micro step bipolar stepping motor driver.

Sinusoidal micro step operation is accomplished only a clock signal inputting by means of built-in hard ware.

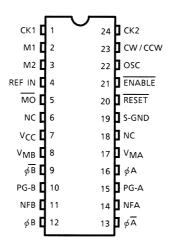

FEATURES

- 1 chip bipolar sinusoidal micro step stepping motor driver.
- Output Current up to 150 mA
- PWM chopper type.
- Structured by high voltage Bi-CMOS process technology.
- Forward and reverse rotation are available.
- 2, 1–2, W1–2, 2W1–2 phase 1 or 2 clock drives are selectable.
- Package: SSOP24-P-300-1.00
- Input Pull–Up Resistor equipped with RESET and ENABLE Terminal : R = 200 $k\Omega$ (Typ.)
- Output Monitor available with $\overline{\text{MO}}.\text{Io}(\overline{\text{MO}}) = \pm 2 \text{ mA MAX}.$
- Reset and Enable are available with RESET and ENABLE.

Weight: 0.32 g (Typ.)

BLOCK DIAGRAM

Pull-up Resistance pin (20), (21) : 200 k Ω (Typ.)


pin (6), (18) : Non Connection

PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION						
1	CK1	Clock signal input terminal.	TRUTH TABLE A					
2	M1	Excitation control input.	TOUTLI TABLE D					
3	M2	citation control input.						
4	REF IN	V_{NF} control input. High Level ; V_{NF} = 0.5 V, Low Level ; V_{NF} = 0.25 V	•					
5	MO	Monitor output.						
6	NC	No connection.						
7	V _{CC}	Supply voltage terminal for contol circuit.						
8	V _{MB}	Supply voltage terminal for Motor Drive.						
9	φB̄	Output \overline{B}						
10	PG-B	Power GND						
11	NFB	B-ch current detection terminal.						
12	φВ	Output B						
13	φĀ	Output $\overline{\overline{A}}$						
14	NFA	A-ch current detection terminal.						
15	PG-A	Power GND						
16	φΑ	Output A.						
17	V _{MA}	Supply voltage terminal for Motor Drive.						
18	NC	No connection.						
19	S-GND	Signal GND.						
20	RESET	Reset signal input terminal.	TRUTH TABLE A					
21	ENABLE	Enable signal input terminal.	TRUIT TABLE A					
22	OSC	Sawtooth oscilation terminal.	•					
23	CW / CCW	Forward rotation / Reverse rotation input terminal.	TRUTH TABLE A					
24	CK2	Clock signal input terminal.	TRUIT IABLE A					

PIN CONNECTION (Top view)

Note: NC: No connection

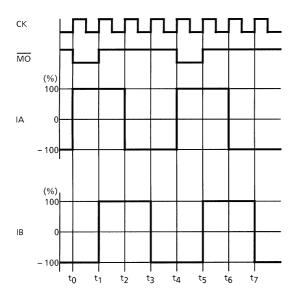
TRUTH TABLE A

	INPUT										
CK1	CK2	CW / CCW	RESET	ENABLE	MODE						
7	Н	L	Н	L	CW						
7	L	L	Н	L	INHIBIT						
Н	-	L	Н	L	CCW						
L		L	Н	L	INHIBIT						
	Н	Н	Н	L	ccw						
7	L	Н	Н	L	INHIBIT						
Н	-	Н	Н	L	CW						
L	5	Н	Н	L	INHIBIT						
Х	X	X	L	L	INITIAL						
Х	Х	Х	X	Н	Z						

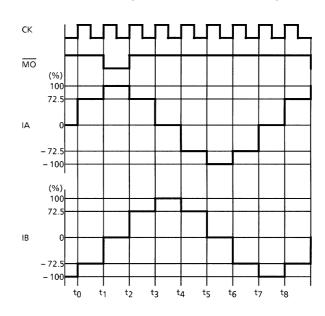
Z : High impedance

X : Don't Care

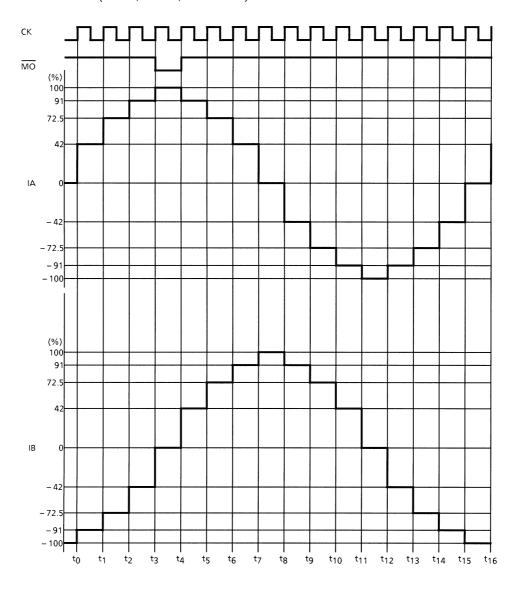
TRUTH TABLE B

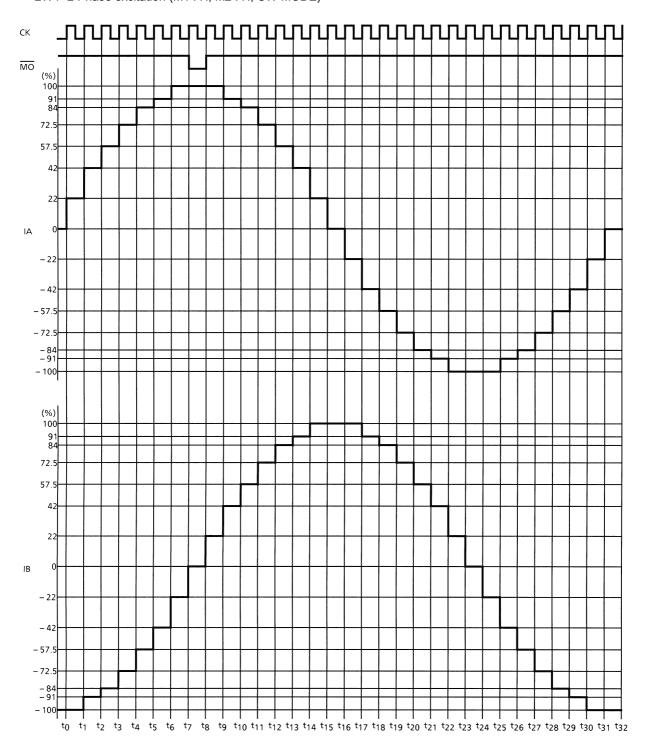

INP	UT	MODE		
M1	M2	(EXCITATION)		
L	L	2 Phase		
Н	L	1-2 Phase		
L	Н	W1-2 Phase		
Н	Н	2W1-2 Phase		

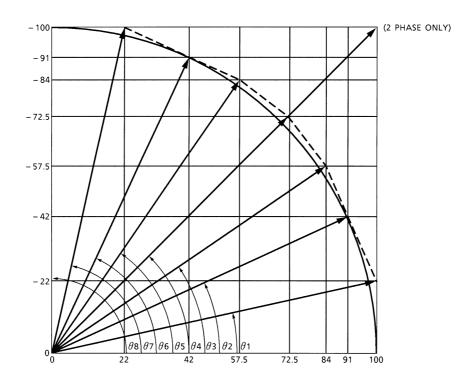
INITIAL MODE


MODE	I _{OUT} (A)	I _{OUT} (B)
2 Phase	100%	-100%
1-2 Phase	100%	0%
W1-2 Phase	100%	0%
2W1-2 Phase	100%	0%

EXCITATION

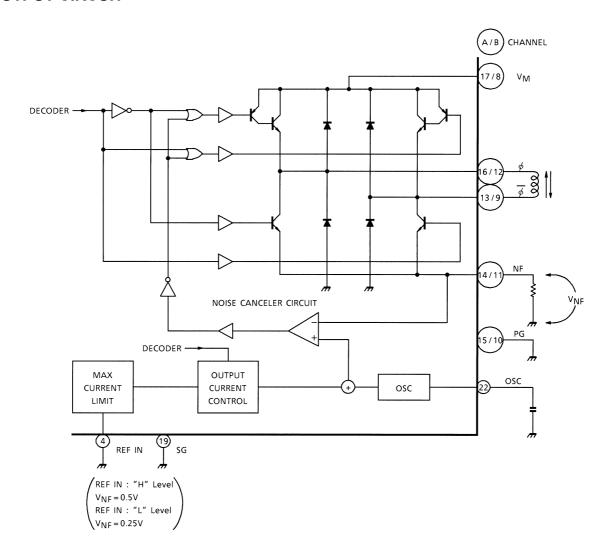

2 Phase excitation (M1 : L, M2 : L, CW MODE)


1-2 Phase excitation (M1 : H, M2 : L, CW MODE)


W1-2 Phase excitation (M1 : L, M2 : H, CW MODE)

2W1-2 Phase excitation (M1 : H, M2 : H, CW MODE)

OUTPUT CURRENT VECTOR ORBIT (Normalize to 90° for each one step)

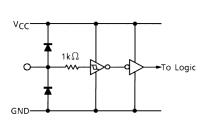


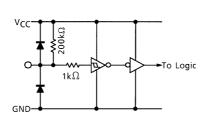
θ	ROTATIO	N ANGLE	VECTOR LENGTH				
Ð	IDEAL	TB6504F	IDEAL	TB6	504F		
θ0	0°	0°	100	100.00	_		
θ1	11.25°	12.41°	100	102.39	_		
θ2	22.5°	27.78°	100	100.22	_		
θ3	33.75°	34.39°	100	101.80	_		
θ4	45°	45°	100	102.53	141.42		
θ5	56.25°	55.61°	100	101.81	_		
θ6	67.5°	65.22°	100	100.22	_		
θ7	78.75°	77.59°	100	102.39	_		
θ8	90°	90°	100 100.00		_		
			1-2, W1-2, 2	W1-2, Phase	2 Phase		

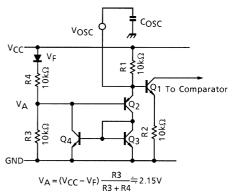
7

2001-06-13

OUTPUT CIRCUIT




INPUT CIRCUIT


CK1, CK2, CW / CCW, M1, M2, REF IN : Terminals

RESET, ENABLE: Terminal

OSC : Terminal

OSC FREQUENCY CALCULATION

Sawtooth OSC circuit consists of Q1 through Q4 and R1 through R4.

 Q_2 is turned "off" when Vosc is less than the voltage of 2.5 V + VBE Q_2 approximately equal to 2.85 V.

Vosc is increased by Cosc charging through R1.

Q3 and Q4 are turned "on" when VOSC becomes 2.85 V (Higher level.)

Lower level of V (22) pin is equal to VBE Q_2 + VSAT Q_4 approximately equal to 1.4 V.

Vosc is calculated by following equation.

$$V_{OSC} = 5 \cdot [1 - \exp(-\frac{t}{C_{OSC} \cdot R1})] \qquad (1)$$

Assuming that $V_{OSC} = 1.4 \text{ V} (t = t_1) \text{ and } = 2.85 \text{ V} (t = t_2)$

Cosc is external capacitance connected to pin (22) and R1 is on-chip $10 \text{ k}\Omega$ resistor.

Therefore, OSC frequency is calculated as follows.

$$t_1 = -C_{OSC} \cdot R1 \cdot \ell n \left(1 - \frac{1.4}{5}\right)$$
(2)

$$t_2 = -C_{OSC} \cdot R1 \cdot \ell n \left(1 - \frac{2.85}{5}\right)$$
(3)

$$f_{OSC} = \frac{1}{t_2 - t_1} = \frac{1}{C_{OSC} \left(R1 \cdot \ \ell n \left(1 - \frac{1.4}{5} \right) - R1 \cdot \ell n \left(1 - \frac{2.85}{5} \right) \right)}$$

=
$$\frac{1}{5.15~-\mathrm{C}_{OSC}}$$
 (kHz) (C $_{OSC}$: μ F)

2001-06-13

ENABLE AND RESET FUNCTION AND MO SIGNAL

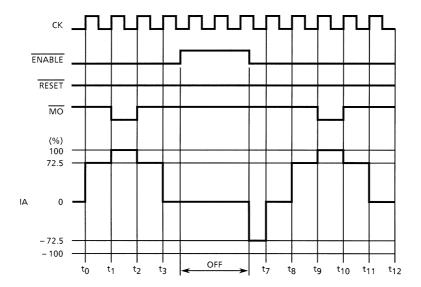


Fig.1 1-2 Phase drive mode (M1 : H, M2 : L)

ENABLE Signal disables only Output Signal.

Internal logic functions are proceeded by CK signal without regard to ENABLE signal.

Therefore, Output Current is initiated from the proceeded timing point of internal logic circuit after release of disable mode.

Fig. 1 shows the ENABLE functions, when the system is selected in 1-2 Phase drive mode.

As \overline{RESET} is low, the decoder is initialized and \overline{MO} is low.

After RESET is high, the motion is resumed from next clock as shown in Fig.2.

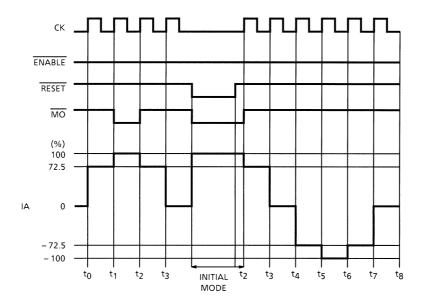


Fig.2 1-2 Phase drive mode (M1 : H, M2 : L)

 $\overline{\mathrm{MO}}$ (Monitor Output) Signals is used as rotaion and initial signal for stable rotation checking.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
	V _{CC}	5.5		
Supply Voltage	V _{M (opr)}	V _{CC} - 0.3~10	V	
	V _{M (MAX)}	18		
Output Current	I _{O (MAX)}	150	- mA	
Output Current	lo (MO)	±2		
Input Voltage	V _{IN}	~V _{CC}	V	
Power Dissipation	P _D	0.59 (Note 1)	W	
Fower Dissipation	۲۵	0.83 (Note 2)	† vv	
Operating Temperature	T _{opr}	-10~70	°C	
Storage Temperature	T _{stg}	-55~150	°C	
Feed Back Voltage	VI	1.0	V	

Note 1: No heat sink

Note 2: With heat sink ($50 \times 50 \times 1.6$ mm Cu 10%)

RECOMMENDED OPERATING CONDITIONS (Ta = $-10\sim70$ °C)

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Voltage	V _{CC (opr)}	_	_	4.5	5.0	5.5	V
Output Voltage	V _{M (opr)}	_	_	5.5	_	8.0	V
Output Current	lout	_	_	_	_	120	mA
Input Voltage	V _{IN}	_	_	1	_	V _C C	٧
Clock Frequency	f _{CLOCK}	_	_		_	5	kHz
OSC Frequency	fosc	_	_	15	_	80	kHz

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, Ta = 25°C, V_{CC} = 5 V, V_{M} = 8 V)

CHARACTERISTIC		SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Input Voltage	High	V _{IN (H)}		M1, M2, CW / CCW, REF IN	3.5 —		V _{CC} +0.4	V
input voitage	Low	V _{IN (L)}	1	ENABLE, CK1, CK2, RESET	GND -0.4	_	1.5	V
Input Hysteresis Vo	Itage	V _H			_	600	_	mV
		I _{IN-1} (H)		M1, M2, REF IN, V _{IN} = 5.0 V	_	_	100	nA
Input Current		I _{IN-1} (L)	1	ENABLE, V _{IN} = 0 V, RESET INTERNAL PULL-UP RESISTOR	5	25	50	μA
		I _{IN-2 (L)}		SOURCE TYPE, V _{IN} = 0 V	_	_	100	nA
	I _{CC1}			Output Open RESET : H ENABLE : L (2, 1–2 Phase excitation)	_	10	18	
Quiescent Current V _{CC} Terminal		t Icc2		Output Open (W1-2, 2W1-2 Phase excitation) RESET: H ENABLE: L	_	10	18	mA
	Ісс3			RESET : L, ENABLE : H	_ 5	_		
		I _{CC4}		RESET : H, ENABLE : H	_	5	_	
Comparator	High	V _{NF (H)}	3	REF IN H R _{NF} = 5 Ω, C _{OSC} = 0.0033 μF	0.45	0.5	0.55	V
Reference Voltage	Low	V _{NF (L)}	3	REF IN L R_{NF} = 2.5 Ω , C_{OSC} = 0.0033 μF	0.22	0.25	0.28	V
Output Differential		ΔV _O	_	B / A, C_{OSC} = 0.0033 μF R_{NF} = 2.5 Ω, REF IN = L	-10	_	10	%
V _{NP (H)} -V _{NF (L)}		ΔV_{NF}	_	V _{NF (L)} / V _{NF (H)} C _{OSC} = 0.0033 μF	43	50	57	%
Maximum OSC Frequency		fosc (MAX.)	_	_	100	_	_	kHz
Minimum OSC Frequency		fosc (MIN.)	_	_	_	_	10	kHz
OSC Frequency		fosc	_	C _{OSC} = 0.0033 μF	31	44	70	kHz
Output Voltage		V _{OH (MO)}	_	I _{OH} = -40 μA	4.5	4.9	V_{CC}	\ \
		V _{OL (MO)}	_	I _{OL} = 40 μA	GND	0.1	0.5	,

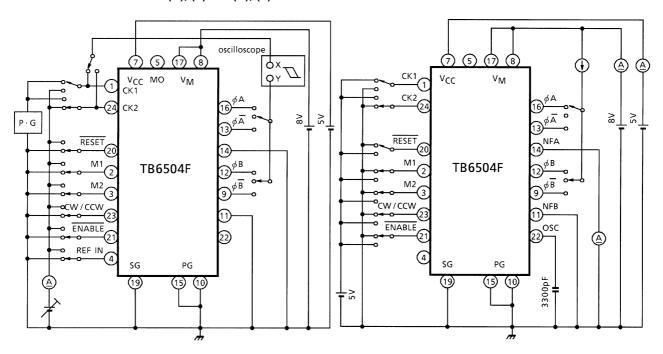
OUTPUT BLOCK

CHARACTERISTIC			SYMBOL	TEST CIRCUIT	TE	ST CONDITION	MIN	TYP.	MAX	UNIT	
		Upper	Side	V _{SAT U1}		lour = 0.1	I _{OUT} = 0.12 A		0.90	1.25	
Output Sat	aturation	Lower	Side	V _{SAT L1}	4	1001 - 0.1	2 A	_	0.22	0.37	V
Voltage		Upper	Side	V _{SAT U2}] 4	J = 0.00	÷ ^	_	0.83	_]
		Lower	Side	V _{SAT L2}		I _{OUT} = 0.00	o A	_	0.12	_	
Diode Fo	rward	Upper	Side	V _{F U1}	- 5	J 0 1	2.4	_	1.18	1.8	V
Voltage		Lower	Side	V _{F L1}	5	I _{OUT} = 0.12	2 A	_	0.92	1.6	V
Output D							: "H" Level : "L" Level en	_	_	50	μА
	Output Dark Current (A + B Channels)			I _{M2}	2	ENABLE: "L" Level RESET: "H" Level Output Open, 2 Phase excitation mode		ı	8	28	mA
NF Term	NF Terminal Current			I _{NF}		ENABLE : "L" Level RESET : "H" Level Output Open			2.5	7	
	2W1-2φ	/1-2φ W1-2φ 1-2φ				θ = 0		_	100	_	
	2W1-2φ	_	_			θ = 1 / 8		_	100	_	
	2W1-2φ	W1−2φ	_			θ = 2 / 8		86	91	96	1
A-B	2W1-2φ	_	_	VECTOR		θ = 3 / 8	REF IN : L RNF = 2.5 Ω	79	84	89	
Chop- ping	2W1-2φ	W1−2φ	1-2φ	VECTOR	3	θ = 4 / 8	C _{OSC} = 0.0033 μF L = 10 mH/R = 0.5 Ω	67.5	72.5	77.5	%
Current (Note)	2W1-2φ	_	_			θ = 5 / 8	10 IIII I/IX = 0.3 12	52.5	57.5	62.5	1 /
(NOIE)	2W1-2φ	W1−2φ	_			θ = 6 / 8		37	42	47	
	2W1-2φ	_	_		θ = 7 / 8		17	22	27		
	2 Phase E VECTOR		Mode	_	_		_	-	100	_	

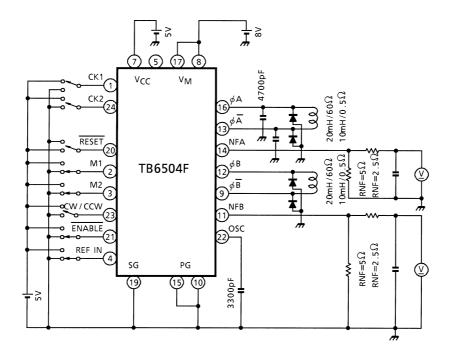
Note: Maximum current ($\theta = 0$): 100%

 $2W1-2\phi$: 2W1, 2 phase excitation mode $W1-2\phi$: W1, 2 phase excitation mode $1-2\phi$: 1, 2 phase excitation mode

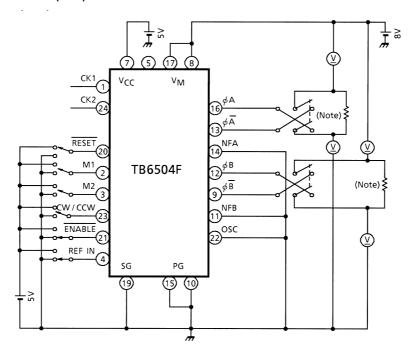
TOSHIBA


CHARACTERISTIC			SYMBOL	TEST CIRCUIT	TE	ST CON	DITION	MIN	TYP.	MAX	UNIT	
	2W1-2φ	W1−2φ	1-2φ			θ = 0			_	100	_	
	2W1-2φ	_	_			θ = 1 / 8				100	_	
	2W1-2φ	W1−2φ	_			θ = 2 / 8			_	91.2	_	
A-B	2W1-2φ	_	_			θ = 3 / 8	REF IN RNF =	3.3 Ω	_	84.2	_	
Chop- ping	2W1-2φ	W1-2φ	1-2φ	VECTOR	3	θ = 4 / 8	COSC :	= 0.0033 μF nH/R = 60 Ω	_	73.6	_	%
Current (Note)	2W1-2φ	_	_			θ = 5 / 8			_	59	_	
(14010)	2W1-2φ	W1−2φ	_			θ = 6 / 8			_	44.6	_	
	2W1-2φ	_	_			θ = 7 / 8			_	25.6	_	
	2 Phase I VECTOR		Mode				_		_	100	_	
						Δθ = 0 / 8-	1 / 8		_	0	_	
						Δθ = 1 / 8-	Δθ = 1 / 8-2 / 8		10	22.5	35	
						Δθ = 2 / 8-			5	17.5	30	mV
Feed Ba	ck Voltage	Step		ΔV_{NF}	_			RNF = 2.5Ω Cosc	16.25	28.75	41.25	
						$\Delta\theta = 4 / 8 - 5 / 8$ = 0.0033		= 0.0033 µF	25	37.5	50	
						Δθ = 5 / 8-6 / 8			26.25	38.75	51.25	
						Δθ = 6 / 8-	7/8		37.5	50	62.5	
				t _r		R _L = 2 Ω, V _{NF} = 0 V, C _L = 15 pF		ı	0.3	_	_	
				t _f		$R_L = 2 \Omega$, $V_{NF} = 0 V$, $C_L = 15 pF$ $CK \sim Output$			-	2.2		_
				t_{pLH}					-	1.5	_	
				t _{pHL}		OK * Outp	ut		ı	2.7	_	1
Output T	r Switching	n Characte	arietice .	t_{pLH}	7	OSC ~ Out	nut		-	5.4	_	μs
Output	1 Owntoning	y Orlandon	21131103	t _{pHL}	,	000 00	.put		_	6.3	_	μο
				t _{pLH}		RESET ~ (Output		_	2.0	_	
			t _{pHL}		I CLOLI I I	Juipui		-	2.5	_		
			t _{pLH}		FNARI F ~	Output		-	5.0	_]	
				t _{pHL}		ENABLE ~ Output			_	6.0	_	
Output L	eakage	Upper S	Side	loh	6	V _M = 18 V			_	_	50	μΑ
Current	Current		Side	l _{OL}	6 VM = 18 V			_	_	50	μπ	

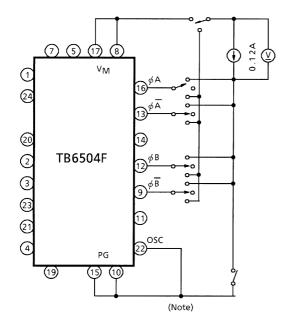
Note: Maximum current ($\theta = 0$): 100%

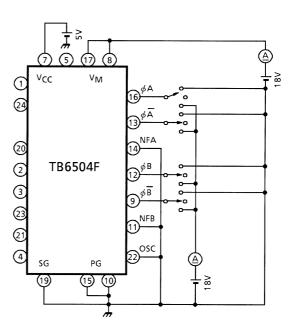

 $2W1-2\phi$: 2W1, 2 phase excitation mode $W1-2\phi$: W1, 2 phase excitation mode $1-2\phi$: 1, 2 phase excitation mode

TEST CIRCUIT 1. : $V_{IN\ (H),\ (L),\ }I_{IN\ (H),\ (L)}$


TEST CIRCUIT 2. : I_{CC,} I_M, I_{NF}

TEST CIRCUIT 3. : V_{NF (H), (L)}

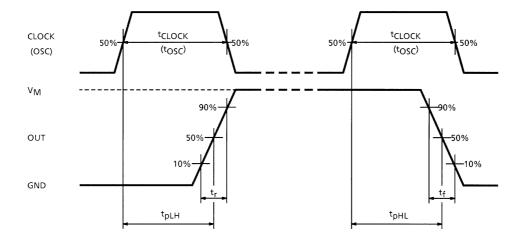

TEST CIRCUIT 4. : $V_{CE\,(SAT)}$ Upper, Lower

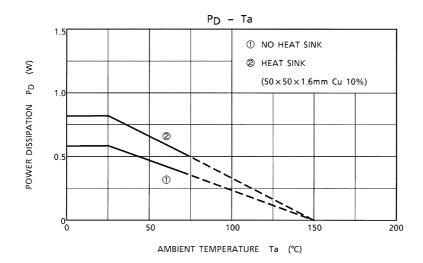


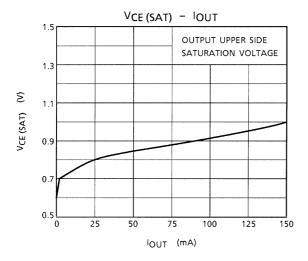
Note: Calibrate Output Current becomes 0.06 A (or 0.12 A) with this resistor.

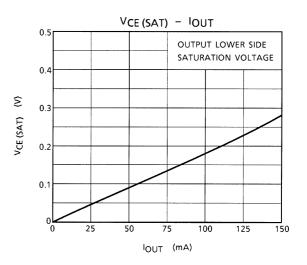
TEST CIRCUIT 5. : V_{F-U}, V_{F-L}

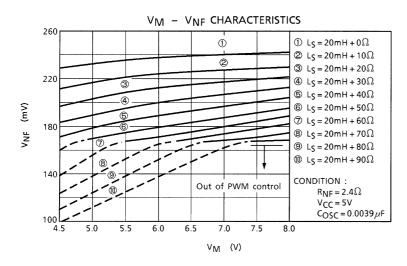
TEST CIRCUIT 6.: IOH, IOL

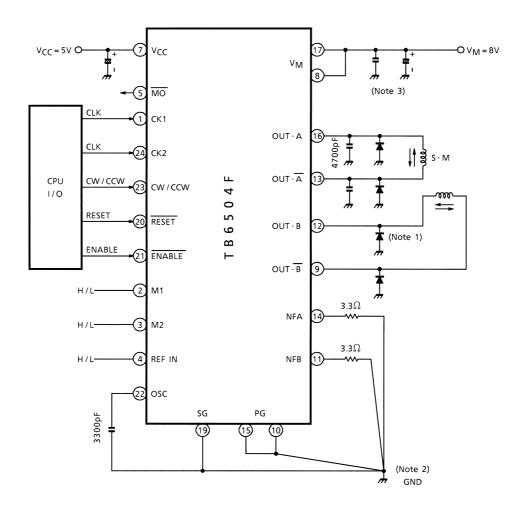




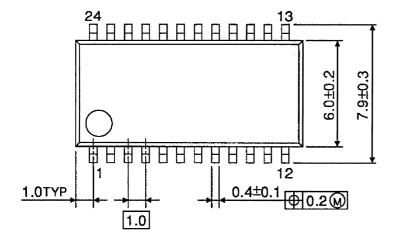

Note: Not to take a GND with any non-connecting Pins.

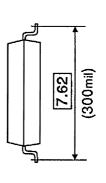

AC ELECTRICAL CHARACTERISTIC, TEST CIRCUIT

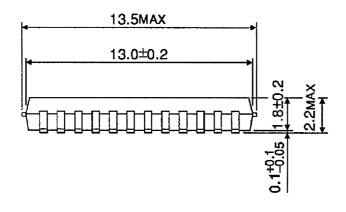

CK (OSC)-OUT

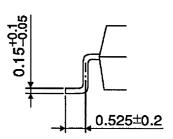


APPLICATION CIRCUIT




- Note 1: Schottky diode (U1GWJ49) to be connected additionally between each output (pin 16 / 13 / 12 / 9) and GND for preventing Punch-through Current.
- Note 2: GND pattern to be laid out at one point in order to prevent common impedance.
- Note 3: Capasitor for noise suppression to be connected between the Power Supply (V_{CC}, V_M) and GND to stabilize the operation.
- Note 4: Utmost care is necessary in the design of the output line, V_M and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.


Unit: mm


PACKAGE DIMENSIONS

SSOP24-P-300-1.00

Weight: 0.32 g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.