

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1310N

NTSC VIDEO, CHROMA, DEFLECTION, AND DEC. DISTORTION COMPENSATION IC (FOR YUV INTERFACE)

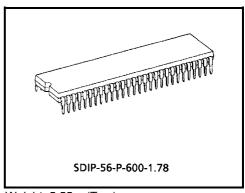
TA1310N is Video Chroma and deflection signal. Processing IC for NTSC. On a 56-pin shrink DIP package. TA1310N has deflection distortion compensation. TA1310N uses an $\rm I^2C$ Bus controls for controllings and settings.

FEATURES

Video Signal Processing

- Built-in Y delay line
- Black stretch
- DC restoration ratio compensation
- Aperture controlled sharpness
- Output for velocity scan modulation (VSM)
- White peak suppression (WPS)

Chroma Signal Processing

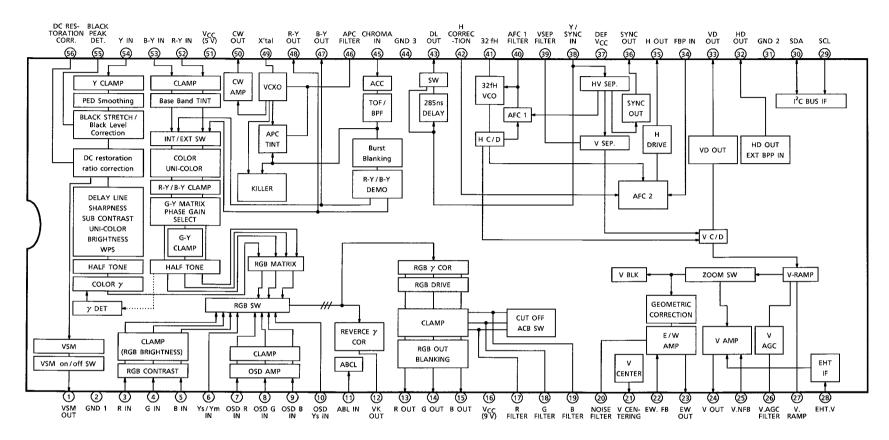

- Built-in chroma BPF / TOF
- R-Y and B-Y outputs
- Color / BW situation output by read bus

Sync Signal Processing

- Counts down 32 fH
- Dual AFC
- Vertical AGC
- HD and VD outputs
- Vertical frequency fixed mode
- Horizontal and Vertical position alignment
- DC outputs for vertical centering

Text Signal Processing

- Analog RGB inputs
- Digital RGB inputs
- Halftone switch (Y_M)
- Cutoff and drive alignment
- YUV inputs



Weight: 5.55 g (Typ.)

Deflection Correction Function

- Horizontal and Vertical amplitude adjustment
- Vertical linearity correction
- Vertical S correction
- Vertical EHT correction
- E / W parabola correction
- E / W corner correction
- E / W trapezium correction

BLOCK DAIGRAM

PIN FUNCTION

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
1	VSM OUT	VSM means Verocity Scanning Modulation.	4 MHz peak	
2	GND I	The terminal for		
		GND of Video / Y / TEXT circuits.	_	
3	R _{IN}	The terminals for Analog RGB signal input.		
4 5	G _{IN} B _{IN}	Input signals clamped by coupling capacitors.	$3 + \frac{1}{1} k\Omega$	100 IRE = 0.5 V _{p-p}
		(*) Even when not in use, connect to GND with a coupling capacitor	Buffer Clamp	3.7 V
6	Y _S / Y _M IN	The terminal for switching of Analog RGB Mode and Half tone.	Soo Ω Ym Ys	RGB 2.1 V Half Tone 0.7 V TV GND
7	OSD R IN	The terminals for	+ ++	
8	OSD G IN OSD B IN	Analog OSD RGB signal input.	7, 8, 9 1 kΩ	100 IRE = 1.25 V _{p-p}
		Input signals		1.25 Vp.p
		clamped by coupling capacitors.	C Σ 1 kΩ	_/
		(*) Even when not in use, connect to GND with a coupling capacitor.		5.5 V

4

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
10	OSD Y _S IN	The terminal for switching of internal RGB signals and Analog OSD RGB signals (Pin 7, 8, 9).	VSMM 1.3 kΩ OSD OSD OSD	Analog RGB 2.8 V Main GND
11	ABL IN	The terminal for the external unicolor and brightness control. ABL Gain and ABL start point can be set by using BUS.	1 S kΩ ABL ABL	OPEN 6.0 V
12	VK OUT	The terminal outputs signal in order to input in H-correction (Pin 42). The signal corresponds to RGB signal.	200 Ω (2)	
13 14 15	R OUT G OUT B OUT	The terminals for RGB signal output.	200 Ω 13, 14, 15	7 \rac{1}{\tau}
16	V _{CC} (9 V)	The terminal for V _{CC} Supply 9 V. The terminals is connected to 9 V (typ.).	_	
17 18 19	R Filter G Filter B Filter	Control the RGB output cutoff voltage, holding the standard pulse period comparator output to one vertical period. For this control, use the bus function RGB cutoff. The filters must be low leakage current filters.	500 Ω 1 kΩ 5 kΩ 17, 18, 19	

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
20	NOISE FILTER	Connect to GND with a 0.47-µF coupling capacitor.		
21	V Centering	The terminal for the DAC output that controlled by BUS (V-center).	32 kΩ 1 kΩ 21 32 kΩ π π π π	
22	EW FB	The terminal for E / W feedback.	23 50 kΩ 23 23	八八
23	EW OUT	The terminal for output of E / W drive signal.		
24	V OUT	The terminal for output of Vertical drive signal.	200 Ω 200 Ω 5 kΩ 75 kΩ	
25	V NFB	The terminal for input of Vertical negative feedback. If input voltage is less than 2 V, V-Guard function works and blanks RGB signal output.	V-out 23 12.5 kΩ WGARD	

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
26	V AGC Filter	The terminal to be connected a capacitor for Automatic gain control of Vertical RAMP signal.	\$000 \$0007 \$20kD	
27	V RAMP	The terminal to be connected a capacitor to generate Vertical RAMP signal.	AGC AGC 22	1//
28	EHT V	The terminal for the Vertical EHT input.	25 kΩ 25 kΩ 25 kΩ 25 kΩ 25 kΩ	
29	SCL	The terminal for input of I ² C BUS clock.	20 kΩ	
30	SDA	The terminal for input / output of I ² C BUS data.	30 20 kΩ	

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
31	GND II	The terminal for the GND of DEF / I ² C / EW.	-	
32	HD OUT	The terminal for the HD pulse. The suspension period of the Black peak stretching is extended by inputting the external pulse.	32) BPP >	HD Picture period
33	VD OUT	The terminal for the VD pulse.	₹ m m m m m 33	
34	FBP IN	The terminal for the flyback pulse to control H-BLK and H-AFC.	300 Ω H BLK H BLK	H-AFC···········5 V H-BLK············1.4 V
35	H OUT	The terminal for the Horizontal output.	2500 140 140 150 150 150 150 150 150 150 150 150 15	5 Vp-p

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
36	SYNC OUT	The terminal for output of the synchronizing signal that was separated in the synchronous separation circuit. This terminal is of the open collector system.Connect the pull-up resistor.	2000 2000 2000 2000 2000	7
37	DEF V _{CC}	The terminal for V _{CC} supply 9 V of DEF.		
38	Y / SYNC IN	The terminal for input of the synchronous separation circuit. Input via clamp capacitor.	(Auto slice) 1 kΩ 2 VF Fixed slice	1vp-p
39	V SEP Filter	The terminal to be connected a capacitor for the Vertical synchronous separation circuit.	247 500Ω 39	
40	AFC I Filter	Connect the filter for horizontal AFC I detection. The frequency of the horizontal output varies depending on the voltage at this pin.	300 Ω 30 kΩ 7.5 kΩ 40 40 40 40 40 40 40 40 40 40 40 40 40	

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
41	32 fh VCO	Connect the ceramic oscillator for horizontal oscillation. The oscillator to be used is CSBLA503KECZF30, made by Murata electronics.	10 kΩ m 1 kΩ 41	
42	H Correction	The terminal to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high tension fluctuation. This terminal can be inputted VK output (Pin 12).	42 1 kΩ 22.5 kΩ 22.5 kΩ 22.5 kΩ	
43	DL OUT	The terminal outputs delayed Y signal. Input this signal to Y IN (Pin 54) via a capacitor.	3000 W	
44	GND III	The terminal for GND of DEF linear / Chroma circuits.	_	
45	CHROMA IN	The terminal for the chroma input.	ACCC ACCC	DC: 1.77 V AC: Burst 286 mV _{p-p}

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
46	APC	The terminal to be connected APC filter. The oscillation frequency of VCXO varies depending on the voltage at this pin.	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
47	B-Y OUT	The terminal outputs the B-Y signal.	47, 48 U008	DC: 2.2 V AC: 300m V _{p-p} (Rainbow color bar)
48	R-Y OUT	The terminal outputs the R-Y signal.	48 Filter TEST	DC: 2.2 V AC: 300mV _{p-p} (Rainbow color bar)
49	X'tal	The terminal to be connected with a 3.579545 MHz X'tal oscillator. The oscillated frequency, f ₀ , is controlled by series capacitors, and frequency adjustment range can be expanded by putting capacitors in parallel.		
50	CW OUT	The terminal for CW output generated in VCXO.	\$ \$50	

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
51	V _{CC} (5 V)	The terminal for V _{CC} supply 5 V.	_	
52	R-Y IN B-Y IN	The terminals for the R-Y / B-Y signal input. Input signals clamped by coupling capacitors. (*) Even when not in use, connect to GND with a coupling capacitor.	52, 53 O N N N N N N N N N N N N N N N N N N	
54	ΥIN	The terminal for the Y signal input. Input the Y signals clamped by coupling capacitors.	1 kΩ 1 kΩ 54	31 OO IRE = 1 V _P -p
55	BLACK PEAK DET	The terminal to be connected the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin.	5 kΩ	
56	DC RESTORATION CORR.	The terminal to be connected capacitor for DC restoration correction control. Open this pin if not use the DC restoration correction.	(S) 5kΩ	

BUS CONTROL MAP

Slave address: 88H (WRITE) / 89H (READ)

	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	
00	ABL POII	NT			UNI-C	OLOR			
01	TEST			E	BRIGHTNES	3			
02	Y-MUTE				COLOR				
03				TINT				TOF-SW	
04			SHARPNE	SS			ABL	GAIN	
05	F	RGB BRIGHT	NESS		VER	TICAL POSI	TION	UV-SW	
06			G DF	RIVE GAIN				V-AGC	
07		B DRIVE GAIN						VSM-G	
08				R CUT OF	-F				
09	G CUT OFF								
0A				B CUT OF	F				
0B		HORIZONTAL POSITION B. S. POINT						-	
0C			VERTICAL S	SIZE			ZOOM	SERVICE	
0D		F	HORIZONTAL	SIZE			HV	HV-FIX	
0E		E/W	PARABOLA			V-9	CORRECT	ION	
0F	V	LIN CORRE	CTION			SUB CO	NTRAST		
10		E / W TRAPE	ZIUM			E/W C	ORNER		
11	COL-γ				V-BL	K START PH	HASE		
12	RY / GY	1	DL-		V_RI	K STOD DH	IASE		
12	PHASE / G	SAIN	MODE	V-BLK STOP PHASE					
13			VERTICAL CENTERING RGB-γ						
14	V CENTER	RING			BASE BA	ND TINT			
	DAC SV	V			D, (CL D)				

READ MODE: Slave address 89H

	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
	PORES	Y-IN	RGB-OUT	H-OUT	V-OUT	EW-OUT	COLOR	ED2

13

The preset value for D_7 is 1. The preset values for D_0 to D_6 are 0.

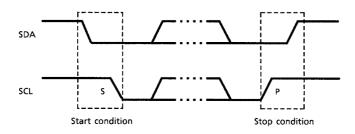
BUS CONTROL CHARACTERISTICS BY FUNCTION

Write mode

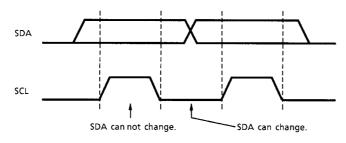
ITEM		DATA	No. OF BITS	PRESET VALUE
Unicolor (UNI-COLOR) / RGB Contrast	000000 ;-18dB	111111; 0 dB	6	-18 dB (000000)
Brightness (sub-brightness included) (BRIGHTNESS)	0000000 ; -40 (IRE)	1111111; +40 (IRE)	7	-40 (IRE) (000000)
Color (sub-color included) (COLOR)	0000000 ; −∞	1111111; +6 dB	7	-∞ (000000)
Tint (sub-tint included) (TINT)	0000000 ; -32°	1111111; +32°	7	±0° (1000000)
Picture Sharpness (PICTURE-SHARPNESS)	000000 ; -6 dB (at 2.4 MHz)	111111 ; +12 dB	6	+6 dB (100000)
Sub Contrast (SUB-CONTRAST)	0000 ; −3 dB	1111 ; +3 dB	4	-3 dB(0000)
DC Output for Vertical Centering (VERTICAL CENTERING)	0000000 ; 1.0 V	1111111 ; 4.0 V	7	Center (1000000)
External / Internal Color Difference Switching (UV-SW)	0 ; INT	1; EXT	1	INT (0)
RGB Brightness (RGB-BRIGHTNESS)	0000; -20 (IRE)	1111 ; +20 (IRE)	4	Center (1000)
RGB Cut Off (RGB-CUTOFF)	00000000 ; -0.5 V -At bus control-	11111111; +0.5 V	8×3	-0.5 V (00000000)
G / B Drive Gain (GB-DRIVE GAIN)	0000000 ; -5 dB	1111111 ; +3 dB	7×2	Center (1000000)
VSM Gain (VSM-G)	0; ON	1 ; OFF	1	ON (0)
Zoom Mode Switching (ZOOM)	0 ; Normal	1 ; ZOOM	1	normal(0)
Black Stretching Start Point (B.S. POINT)	000; Min / black stre (black correctio 111; MAX / 50 (IRE)	n on)	3	Black stretch OFF (000)
ABL Detection Voltage (ABL POINT)	00 ; MIN	11 ; MAX	2	Center (10)
ABL Sensitivity (ABL GAIN)	00 ; MIN	11 ; MAX	2	MIN (00)
Horizontal position (HORIZONTAL POSITION)	00000 ; −3 µs (left shift) 11111 ; +3 µs)	5	Center (10000)
Horizontal and Vertical Frequency Fixed Mode (HV-FIX)	00 / 01 ; normal 10 ; AFC OFF (Free 11 ; AFC OFF (Free	e run) & V = 263 (H) e run) & V = 262.5 (H)	2	Normal (00)
Vertical Pulse Phase (VERTICAL-PULSE PHASE)	000 ; 0H	111 ; 7H DELAY	3	0 (H) (000)
Service Mode (SERVICE)	0 ; normal	1 ; Service mode (V-Stop)	1	Normal (0)

ITEM		DATA	No. OF BITS	PRESET VALUE
Test Mode (TEST MODE)	1 ; normal	0; RGB BLK OFF	1	Normal (1)
TOF Switching (TOF-SW)	0 ; BPF mode	1 ; TOF mode	1	BPF (0)
V-AGC Time Constant (V-AGC)	0 ; fast	1; slow	1	fast(0)
Vertical Amplitude (VERTICAL SIZE)	000000 ; MIN	111111 ; MAX	6	Center (100000)
Vertical Linearity Correction (V-LIN CORRECTION)	0000 ; Lower stretch	1111 ; Upper stretch	4	Center (1000)
Vertical S Correction (V-S CORRECTION)	000 ; Reverse S MAX	111 ; S MAX	3	(000)
Horizontal Amplitude (HORIZONTAL SIZE)	000000 ; MAX	111111 ; MIN	6	Center (100000)
E / W Parabola Correction (E / W PARABOLA)	00000 ; MIN	11111 ; MAX	5	Center (10000)
E/W Corner Correction (E / W CORNER)	0000 ; Vertical expansion	1111 ; Vertical compression	4	(0000)
E / Wtrapezium Correction (E / W TRAPEZIUM)	0000 ; Expansion upward	1111 ; Expansion downward	4	Center (1000)
Color γ Correction (COL-γ)	0 ; ON	1; OFF	1	OFF(1)
Y Mute (Y MUTE)	0; OFF	1 ; ON	1	ON (1)
RGB γ Correction (RGB-γ)	0; OFF	1 ; ON	1	OFF (0)
DL Mode Switching (DL-MODE)	0; Through	1 ; ON	1	Through (0)
Relative Phase Amplitude Switching (RY / GY PHASE / GAIN)	00 ; NTSC STD 10 ; NTSC (T)	01 ; DVD STD 11 ; A-TV STD	2	TSB STD (10)
Vertical Blanking Start Phase (V-BLK START PHASE)	00000 ; Vth (Hi)	11111 ; Vth (Lo)	5	(00000)
Vertical Blanking Stop Phase (V-BLK STOP PHASE)	00000 ; Vth (Lo)	11111 ; Vth (Hi)	5	(00000)
Base Band Tint	0000000 ; +60 deg *1000000 (Center) : +6 deg	1111111 ; -40 deg	7	Center (1000000)
V Centering DAC Output switch (V Centering DAC SW)	0 ; Interlocking E / W 1 ; Non-interlocking E	trapezium correction / W trapezium correction	1	Non- interlocking (1)

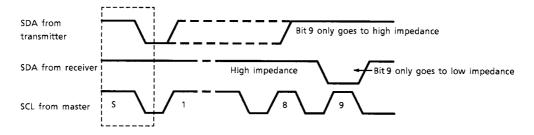
READ MODE

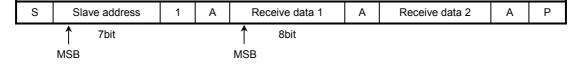

Slave address: 89H

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
PONRES	Y-IN	RGB-OUT	H-OUT	V-OUT	EW-OUT	COLOR	ED2


ITEM	DATA				
Power On Reset (PORES)	0 ; Normal	1 ; Resister preset			
Color Mode (COLOR)	0;B/W	1; NTSC			
Self Diagnosis Result					
Output	0 : NG	1 ; OK			
(RGB-OUT / Y-IN / H-OUT / V-OUT	O, NG	1 , OK			
/ E-W OUT / UV-IN)					
ED2 Indentification	0 ; non-ED2	1; ED2			

I²C BUS COMMUNICATIONS, RECEIVE METHOD


Start and stop condition


Bit transfer

Acknowledgement

Data receive format

When data are received, the master transmitter changes to a receiver immediately after the first acknowledgement and the slave receiver changes to a transmitter.

The master always creates the stop condition.

Details are provided in the Philips I²C specifications.

Option data transmit format

In the above method, the subaddresses are automatically incremented from the specified subaddress and data are set.

Purchase of TOSHIBA I^2C components conveys license under the Philips I^2C patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C standard specification as defined by Philips.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTICS	SYMBOL	RATING	UNIT
Power Supply Voltage (5 V / 9 V)	V_{CCmax}	7 / 12	V
Input Signal Voltage (5 V / 9 V)	einmax	5/9	V _{p-p}
Power Dissipation (Note)	P_{D}	1920	mW
Power Dissipation Reduction Rate	1 / Qja	15.4	mW / °C
Operating Temperature	T _{opr}	-20~65	°C
Storage Temperature	T _{stg}	-55~150	°C

Note: See the figure below.

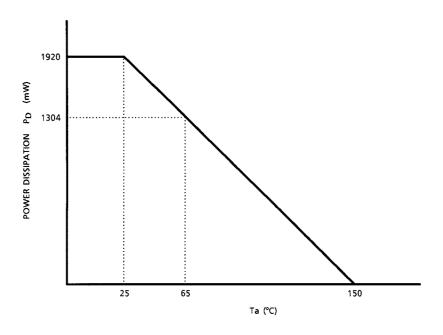


Fig. Temperature reduction curve for power dissipation

RECOMMENDED OPERATING POWER SUPPLY VOLTAGE

ITEM	DATA AND CONDITIONS	MIN	TYP.	MAX	UNIT
Power Supply Voltage	Pin 16, Pin 37	8.7	9.0	9.3	V
	Pin 51	4.8	5.0	5.2	V
Pin 54 Y Input Signal Level	100% white, including synchronization	0.9	1.0	1.1	V _{p-p}
Din 45 Chroma Input Signal Lovel	TOF: off, burst level	100	300	400	m\/
Pin 45 Chroma Input Signal Level	TOF: on, burst level	100	300	400	mV _{p-p}
Pin 38 Sync Signal Input Level	100% white, including synchronization	0.9	1.0	1.1	V _{p-p}

ELECTRICAL CHARACTERISTICS

($V_{CC} = 5 \text{ V} / 9 \text{ V}$, DEF $V_{CC} = 9 \text{ V}$, Ta = 25°C ± 3°C, unless otherwise specified)

Current dissipation

PIN NAME	SYMBOL	TEST CIR-	CURRE	ENT DISSI	PATION	UNIT	REMARKS
	STIVIBOL	CUIT	MIN	TYP.	MAX	UNIT	KLIVIAKKO
5 V V _{CC}	I _{CC1}	_	32.50	38.34	45.30	mA	_
9 V V _{CC}	I _{CC2}	_	48.54	57.44	67.78	mA	_
DEF V _{CC}	I _{CC3}	1	19.70	23.31	27.50	mA	_

DC CHARACTERISTICS Pin voltage

	•					
PIN	PIN NAME	SYM- BOL	MIN	TYP.	MAX	UNIT
1	VSM out	V ₁	4.10	4.30	4.50	
2	GND1	V ₂	_	0.00	_	
3	R in	V ₃	3.40	3.70	4.00	
4	G in	V ₄	3.40	3.70	4.00	
5	B in	V ₅	3.40	3.70	4.00	
6	Ys / Ym in	V ₆	_	0.00	0.20	
7	OSD R in	V ₇	5.00	5.50	6.00	
8	OSD G in	V ₈	5.00	5.50	6.00	
9	OSD B in	V ₉	5.00	5.50	6.00	
10	OSD Ys in	V ₁₀	_	0.00	0.20	
11	ABL in	V ₁₁	5.70	6.00	6.30	
12	VK out	V ₁₂	4.85	5.00	_	
13	R out	V ₁₃	1.20	1.60	2.00	
14	G out	V ₁₄	1.20	1.60	2.00	\/
15	B out	V ₁₅	1.20	1.60	2.00	V
16	V _{CC} (9 V)	V ₁₆	_	9.00	_	
17	R Filter	V ₁₇	2.1	2.5	2.9	
18	G Filter	V ₁₈	2.1	2.5	2.9	
19	B Filter	V ₁₉	2.1	2.5	2.9	
20	Noise Filter	V ₂₀				
21	V Centering	V ₂₁	2.20	2.30	2.40	
22	EW FB	V ₂₂	3.90	4.30	4.70	
23	EW out	V ₂₃	0.60	0.70	0.80	
24	V out	V ₂₄	0.60	0.70	0.80	
25	V NFB	V ₂₅	4.60	5.00	5.40	
26	V AGC	V ₂₆	1.80	2.00	2.20	
27	V RAMP	V ₂₇	4.00	4.20	4.40	
28	EHT, Vin	V ₂₈	4.80	4.90	5.00	

PIN	PIN NAME	SYM- BOL	MIN	TYP.	MAX	UNIT
29	SCL	V ₂₉	4.90	5.00	_	
30	SDA	V ₃₀	4.90	5.00	_	
31	D. GND GND2	V ₃₁	_	0.00	_	
32	HD out	V ₃₂	0.15	0.20	0.25	
33	VD out	V ₃₃	4.90	5.00	5.10	
34	FBP in	V ₃₄	1.30	1.60	1.90	
35	H out	V ₃₅	1.50	1.80	2.10	
36	Sync out	V ₃₆	8.80	9.00	_	
37	DEF V _{CC}	V ₃₇	_	9.00	_	
38	Sync in	V ₃₈	2.80	3.00	3.20	
39	V Sep	V ₃₉	6.00	6.40	6.80	
40	AFC1	V ₄₀	7.20	7.50	7.80	
41	32 fh VCO	V ₄₁	5.70	5.90	6.10	
42	Curve correction	V ₄₂	4.60	4.80	5.00	
43	DL out	V ₄₃	0.30	0.80	1.00	V
44	GND3	V ₄₄	1	0.00		
45	Chroma in	V ₄₅	1.59	1.77	1.95	
46	APC	V ₄₆	1.39	1.72	2.05	
47	B-Y out	V ₄₇	1.91	2.22	2.53	
48	R-Y out	V ₄₈	1.91	2.22	2.53	
49	X'tal	V ₄₉	3.80	4.00	4.20	
50	CW out	V ₅₀	3.00	3.50	4.00	
51	V _{CC} (5 V)	V ₅₁	_	5.00	_	
52	R-Y in	V ₅₂	2.85	3.00	3.15	
53	B-Y in	V ₅₃	2.85	3.00	3.15	
54	Y in	V ₅₄	3.50	3.65	3.90	
55	Black peak detect	V ₅₅	3.20	3.70	3.80	
56	DC restoration correction	V ₅₆	2.90	3.00	3.10	

AC CHARACTERISTICS Video stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
#54 Voltage (Y Input Pedestal Clamp Voltage)	V54		(Note P1)	3.5	3.65	3.9	V
#55 Voltage	V55	_	(Note P2)	3.2	3.7	3.8	V
#56 Voltage	V56	_	(Note P3)	2.93	3.03	3.13	V
#1 Voltage	V1	_	(Note P4)	4.1	4.25	4.4	V
	ΔVPC0	_					
Y Input Pedestal Clamp Error Voltage	ΔVPC1	_	(Note P5)	- 7	±0	+7	mV
	TCL1	_		2.8	2.9	3.0	
Y Input Pedestal Clamp Pulse Phase	TCL2	_	(Note P6)	4.8	4.9	5.0	μs
Y Input Dynamic Range	DR54	_	(Note P7)	1.0	1.25	1.4	V _{p-p}
#56 Output Impedance	Z56	_	(Note P8)	4	5	6	kΩ
Black Stretching Amplifier Maximum Gain	GBS	_	(Note P9)	1.3	1.4	1.5	(Times)
Black Level Compensation	BLC	_	(Note P10)	6	7	8	(IRE)
Black Peak Detection Level	ΔVΒΡ	_	(Note P11)	-15	0	+15	mV
	PB001	_		34	36	42	(IRE)
Black Stretching Start Point	PB111	_	(Note P12)	51	54	61	
DC Restoration Rate Compensation Amp.	GDTC	_	(11.1. 5.10)	1.45	1.55	1.65	(- : \
Gain	GDTR	_	(Note P13)	1.3	1.4	1.5	(Times)
	SCDC	_	(Note P14)		014		
Self-Diagnosis Y IN	SCAC	_		_	OK		
Y Mute	GYM	_	(Note P15)	-∞	-50	-45	dB
Sharpness Peak Frequency	FAP	_	(Note P16)	3.35	4.2	5.05	MHz
0.4.15	GMAX	_	(1) (547)	8	11	14	
Sharpness Control Range	GMIN	_	(Note P17)	-12	-7.5	-3	dB
Sharpness Control Center Characteristics	GCEN	_	(Note P18)	2	5	8	dB
Between Y IN and R OUT Delay Time	TY	_	(Note P19)	120	150	180	ns
VSM Peak Frequency	FVSM	_	(Note P20)	3	4	5	MHz
VOM O :	GVSM0	_	(1) (504)	9	11	13	ı.
VSM Gain	GVSM1	_	(Note P21)	-∞	-30	-20	dB
	VVM10	_	(11.4. 500)	0.7	0.8	0.9	
VSM Muting Threshold Voltage	VVM6	_	(Note P22)	2.15	2.25	2.35	V
	THM1	_					
NOM High Or and Marin D	THM2	_	AL (•		.400	ns
VSM High Speed Muting Response Time	THM3	_	(Note P23)	0	+50	+100	
	THM4	_					
	TVM24	_		64	80	94	
VSM Phase	TVMFP	_	(Note P24)	59	73	87	ns
	TVM2T	_		64	80	94	

Note 1: For testing, see the picture sharpness test circuit diagrams.

Chroma stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT	
	va10	_		93.5	110	127		
	va30	_		272	320	368	m\/	
ACC Characteristic	va300	_	(Note C1)	276	325	374	mV_{p-p}	
	va600	_		276	325	374		
	Α	_		0.80	1.00	1.10	_	
Color Difference Output Loyal	vB	_	(Note C2)	276	325	374	m\/	
Color Difference Output Level	vR	_	(Note C2)	276	325	374	mV _{p-p}	
Color Difference Output Relative Amplitude	vRB	_	(Note C3)	0.90	1.00	1.10	_	
Color Difference Output Demodulation	θBcnt	_	(Nata C4)	3.0	6.0	11.0	0	
Angle	θRcnt	_	(Note C4)	91.0	94.0	99.0		
Color Difference Output Relative Phase	θRB	_	(Note C5)	85.0	89.0	91.0	٥	
	θВтах	_		-35.0	-40.0	-46.5		
Color Difference Output Tint Adjustment	θBmin	_	(Note C6) -	35.0	38.0	44.0	0	
Characteristics	θRmax	_		-35.0	-40.0	-46.5	0	
	θRmin	_		35.0	38.0	46.0		
	BVp	_		5.00	8.00	11.00		
Supply Voltage Dependence of Color	RVp	_	j	5.00	8.00	11.00	%	
Difference Output	BVn	_	(Note C7)	-11.00	-8.00	-5.00		
	RVn	_		-11.00	-8.00	-5.00		
dentification Sensitivity	vCB	_		3.00	4.10	6.00	mV _{p-p}	
	vBC	_	(Note C8)	3.00	4.40	6.00		
	bCB	_	(Note C9)	_	0	_	_	
Bus Read Identification	bBC	_		_	1	_		
Color Difference Output Voltage Difference	vBH	_		_	0	4.00		
in 1H Period	vRH	_	(Note C10)	_	0	4.00	mV _{p-p}	
Color Difference Output Voltage Difference	vBG	_		_	0	2.00		
Every 1H Period	vRG	_	(Note C11)	_	0	2.00	mV _{p-p}	
	VB	_		1.91	2.22	2.53		
Color Difference Output DC Voltage	VR	_	(Note C12)	1.91	2.22	2.53	V	
Difference between DC Voltage Axes of Color Difference Output	VRB	_	(Note C13)	-0.1	0	+0.1	V	
X'tal Free-Run Frequency	Xf	_	(Note C14)	3.579345	3.579545	3.579745	MHz	
APC Frequency Control Sensitivity	βf	_	(Note C15)	0.45	0.90	1.20	<u>Hz</u> mV	
	fh+	_		+250	+500	+2000		
	fh-	_	<u>.</u>	-250	-500	-2000		
APC Pull-In / Hold Range	fp+	_	(Note C16)	+250	+500	+2000	Hz	
	fp-	_		-250	-500	-2000		
	vBNo	_		_	2.0	4.00	mV _{p-p}	
Residual Carrier Level	vRNo	_	- (Note C17)	_	2.0	4.00		
	vBHN	_		_	2.0	4.0	- mV _{p-p}	
Residual Higher Harmonics Level	vRHN	_	(Note C18)	_	2.0	4.0		

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
TOF-BPF Characteristic	GBL	_		17.5	21.0	24.5	- - dB
	GBH	_	(Note C19)	21.5	25.0	28.5	
TOT-DIT GHARACTERISTIC	GTL	_		14.0	17.5	21.0	
	GTH	_		21.5	25.0	28.5	
CW Output Amplitude	vCW	_	(Note C20)	420	700	980	mV_{p-p}

Color difference stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Color Difference Innut Clemp Voltage	VRY	_	(Note A1)	2.85	3.00	3.15	V
Color Difference Input Clamp Voltage	VBY	_	(Note A1)	2.85	3.00	3.15	V
Color Difference Input / Output Doloy Time	DLRY	_	(Note A2)	115	150	185	
Color Difference Input / Output Delay Time	DLBY	_	(Note A2)	115	150	185	ns
Unicolar Adjustment Characteristics	uR	_	(Note A3)	-17	-19	-21	dB
Unicolor Adjustment Characteristics	uB	_	(Note A3)	-17	-19	-21	иь
	cRmax	_		6.5	8.0	9.5	
Colon Adivator ant Characteristics	cRmin	_	(Nata A4)	_	_	-20	٩D
Color Adjustment Characteristics	cBmax	_	(Note A4)	6.5	8.0	9.5	dB
	cBmin	_		_	_	-20	
	vRHo	_		-5.5	-6	-6.5	
RGB Output Half-Tone Characteristics	vGHo	_	(Note A5)	-5.5	-6	-6.5	dB
	vBHo	_		-5.5	-6.5		
	vRSTD	_		0.64	1.13	0.87	
	vGSTD	_		0.39	0.50	0.53	
	vBSTD	_		1.14	1.35	1.56	
	vRDVD	_		0.90	1.07	1.23	
	vGDVD	_		0.51	0.61	0.70	
DOD Outrout Ameritands	vBDVD	_	(Nata AC)	1.14	1.35	1.56	
RGB Output Amplitude	vRTSB	_	(Note A6)	0.78	0.92	1.06	V _{P-P}
	vGTSB	_		0.34	0.41	0.47	
	vBTSB	_		1.14	1.35	1.56	
	vRDTV	_		0.98	1.13	1.34	
	vGDTV	_		0.34	0.41	0.47	
	vBDTV	_		1.14	1.35	1.56	
	vRBSTD	_		0.75	0.84	0.93	
	vGBSTD	_		0.33	0.37	0.41	
	vRBDVD	_		0.71	0.79	0.87	
DCD Output Dolothic Arrallituda	vGBDVD	_	/NI=4= A=\	0.40	0.45	0.50	
RGB Output Relative Amplitude	vRBTSB	_	(Note A7)	0.60	0.68	0.76	
	vGBTSB	_		0.27	0.3	0.33	
	vRBDTV	_		0.75	0.84	0.93	
	vGBDTV	_		0.27	0.3	0.33	

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
	θRSTD	_		92	96	100	
	θGSTD	_		236	240	244	
	θBSTD	_		-4	0	4	
	θRDVD	_		88	92	96	
	θGDVD	_		240	244	248	
RGB Output Demodulation Angle	θBDVD	_	(Note A8)	-4	0	4	0
RGB Output Demodulation Angle	θRTSB	_	(Note Ao)	90	94	98	
	θGTSB	_		235	239	243	
	θBTSB	_		-4	0	4	
	θRDTV	_		103	107	110	
	θGDTV	_		239	243	247	
	θBDTV	_		-4	0	4	
	0RBSTD	_		92	96	100	
	θGBSTD	_		236	240	244	0
	0RBDVD	_		88	92	96	
DCD Output Deletive Dhees	θGBDVD	_	(Note A9)	240	244	248	
RGB Output Relative Phase	0RBTSB	_	(Note A9)	90	94	98	
	θGBTSB	_		235	239	243	
	0RBDTV	_		103	107	111	
	θGBDTV	_		239	243	247	
	XEIR	_		_	-45	-40	
Color Difference EXT → INT Crosstalk	XEIG	_	(Note A11)	_	-45	-40	dB
	XEIB			_	-45	-40	
	XIER	XIER —		_	-45	-40	
Color Difference INT → EXT Crosstalk	XIEG		(Note A12)	1	-45	-40	dB
	XIEB	_	-	_	-45	-40	
Color γ Characteristic	Сү sp	_	(Note A13)	1.80	2.07	2.20	V

Y stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Sync Input~DL Output AC Gain	Gyoff	_	(Note Y1)	-0.30	-0.20	0.01	dB
Sylic input DE Output Ac Gain	Gyon	_	(Note 11)	-0.45	-0.35	0.01	
Sync Input~DL Output Frequency Gain	Gfyoff		(Note Y2)	-0.20	0.00	0.20	- dB
Sync input-DL Output Frequency Gain	Gfyon	_		-3.00	-1.60	0.20	
Sync Input~DL Output Dynamic Range	VDoff		(Note Y3)	1.30	1.60	_	V
Sync input DE Output Dynamic Kange	VDon	_		1.30	1.60	_	V _{p-p}
Sync Input~DL Output Transfer Characteristics	TYDL	_	(Note Y4)	300	350	410	ns

Text stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
	GR	_		3.2	3.80	4.55	
AC Gain	GG	_	(Note T1)	3.2	3.80	4.55	Times
	GB	_		3.2	3.80	4.55	
	GfR	_		_	-3.0	-6.0	
Frequency Characteristics	GfG	_	(Note T2)	_	-3.0	-6.0	dB
	GfB	_		_	-3.0	-6.0	
	vuMAX	_		0.59	0.74	0.88	
Unicelas Adivates ant Characteristic	vuCNT	_	(Nata T2)	0.31	0.39	0.47	V _{p-p}
Unicolor Adjustment Characteristic	vuMIN	_	(Note T3)	0.06	0.08	0.10	
	Δvu	_		17	18.5	20	dB
	VbrMAX	_		4.3	4.6	4.9	
Brightness Adjustment Characteristic	VbrCNT	_	(Note T4)	3.3	3.6	3.9	V
	VbrMIN	_		2.3	2.6	2.9	
Brightness Control Sensitivity	Gbr	_	(Note T5)	14.2	16.3	18.7	mV
White Peak Slice Level	VWPS	_	(Note T6)	2.600	2.825	3.100	V _{p-p}
	VBPSR	_					
Black Peak Slice Level	VBPSG	_	(Note T7)	1.95	2.15	2.35	V
	VBPSB	_					
	TDCR	_					
DC Restoration	TDCG	_	(Note T8)	_	0.0	50	mV
	TDCB	_	, ,				
	N13	_					
RGB Output S / N	N14	_	(Note T9)	_	-50	-45	dB
	N15	_					
	I#13	_	(Note T10)		1.5		
RGB Output Emitter-Follower Drive Current	I#14	_		1.1		1.9	mA
	I#15	_					
	Δt13	_					
RGB Output Temperature Coefficient	Δt14	_	(Note T11)	-2.0	0.0	2.0	mV / °C
·	Δt15	_	,				
Half-Tone Characteristics	GHT	_	(Note T12)	0.45	0.5	0.55	Times
Half-Tone ON Voltage	VHT	_	(Note T13)	0.6	0.8	1.0	V
ű	VVR	_	,				
V-BLK Pulse Output Level	VVG	_	(Note T14)	0.5	1.0	1.5	V
·	VVB	_	,				
	VHR	_					
H-BLK Pulse Output Level	VHG	_	(Note T15)	0.5	1.0	1.5	V
·	VHB		,				
	tdONR	_					
	tdONG			_	0.0	0.3	
	tdONB				0.0		
Blanking Pulse Delay Time			(Note T16) -				μs
	tdOFFR	_					
	tdOFFG	_		_	0.0	0.3	
	tdOFFB	_					

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Sub Contract Control Banca	∆vsu+	_	(Niata 747)	1.8	2.3	2.8	٩D
Sub-Contrast Control Range	Δvsu-	_	(Note T17)	-3.0	-3.5	-4.0	dB
	V#13	_					
RGB Output Voltage	V#14	_	(Note T18)	2.35	2.6	2.85	V
	V#15	_					
	CUT+R	_					
	CUT+G	_		0.45	0.5	0.55	
0.40514.	CUT+B	_	41.4 - 7.0				.,
Cut-Off Voltage Control Range	CUT-R	_	(Note T19)				V
	CUT-G	_		-0.45	-0.5	-0.55	
	CUT-B	_					
	DRG+	_		2.35	2.85	3.35	
	DRG-	_		-4.25	-5.0	-5.75	
Drive Adjustment Range	DRB+	_	(Note T20)	2.35	2.85	3.35	dB
	DRB-			-4.25	-5.0	-5.75	
#11 Input Impedance	Zin11		(Note T21)	24	30	36	kΩ
	ACL1		· · · · · · · · · · · · · · · · · · ·	-1.5	-3.5	-5.5	
ACL Characteristic	ACL2		(Note T22)	-12	-15	-18	dB
	ABLP1			0.04	-0.01	-0.06	
	ABLP2		(Note T23)	-0.09	-0.14	-0.19	
ABL Point	ABLP3	_		-0.24	-0.29	-0.34	V
	ABLP4			-0.37	-0.42	-0.47	
	ABLG1	_	(Note T24)	-0.119	-0.095	-0.072	
	ABLG1			-0.400	-0.320	-0.240	
ABL Gain	ABLG2			-0.750	-0.600	-0.450	V
	ABLG3			-0.730		-0.555	
BLK Off Mode	BLK	_	(Note T25)	-0.923	Oper-	-0.555	_
	GTXR				3		
Analog RGB Gain	GTXG		(Note T26)	4.2	5.0	6.0	Times
	GTXB	_	(,				
	GfTXR	_					
Analog RGB Frequency Characteristics	GfTXG		(Note T27)	_	-1.0	-3.0	dB
Amaiog (Neb) requestoy emaracionedes	GfTXB		(11010-121)		1.0	0.0	u.b
	GR13						
Analog RGB Input Dynamic Lange	GR14		(Note T28)	0.5	0.65		V
Analog NOD input Dynamic Lange	GR15		(14016-120)	0.5	0.03		V _{p-p}
	VTXMAXR	+					
Analog PCR White Peak Slice Level	VTXMAXR	_	(Note T29)	3.5	3.8	4.1	V
Analog RGB White Peak Slice Level		_	(Note 129)	3.3	3.0	4.1	V _{p-p}
	VTXMAXB	_					
Analog DCD Diggle Deale Limited Law 1	VTXMINR	_	(NI=1= T00)	4.0	0.4	0.0	\ ,,
Analog RGB Black Peak Limiter Level	VTXMING	_	(Note T30)	1.9	2.1	2.3	V
	VTXMINB	_					

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
	vuTXR1	_					
	vuTXG1	_		0.85	1.0	1.2	
	vuTXB1	_					
	vuTXR2	_					
	vuTXG2	_		0.50	0.59	0.71	V _{p-p}
Analog RGB Contrast Adjustment	vuTXB2	_	(Note T31)				
Characteristics	vuTXR3	_	(Note 131)				
	vuTXG3	_		0.11	0.13	0.15	
	vuTXB3	_					
	$\Delta vuTXR$	_					
	ΔvuTXG	_		17.0	18.5	20	dB
	ΔvuTXB	_					
	VbrTX1R	_					
	VbrTX1G	_		3.3	3.6	3.9	
	VbrTX1B	_					
A L BOD D : LL	VbrTX2R	_					
Analog RGB Brightness	VbrTX2G	_	(Note T32)	2.8	3.1	3.4	V
Adjustment Characteristics	VbrTX2B	_					
	VbrTX3R	_					
	VbrTX3G	_		2.2	2.5	2.8	
	VbrTX3B	_					
Analog RGB Mode On Voltage	VTXON	_	(Note T33)	2.0	2.25	2.5	V
	тRYSR	_					
	тRYSG	_		_	25	100	
	тRYSB	_					
	tPRYSR	_		_ 30		100	-
	tPRYSG	_			30		
	tPRYSB	_					
	ΔtPRYS	_		_	0	20	
Analog RGB Mode Transfer Characteristics	τFYSR	_	(Note T34)				ns
	тFYSG	_		_	10	100	
	тFYSB	_					
	tpFYSR	_					
	tpFYSG	_		_	25	100	
	tpFYSB	_					
	ΔtPFYS	_			0	20	
	Vv→aR	_					
Crosstalk from Video to Analog RGB	Vv→aG	_	(Note T35)	_	-50	-45	dB
j	Vv→aB	_	, , , , ,				
	Va→vR	_					
Crosstalk from Analog RGB to Video	Va→vG	_	(Note T36)	_	-55	-50	dB
3	Va→vB —		(uБ
	GOSDR	_					
Analog OSD Gain	GOSDG	<u> </u>	(Note T37)	1.8	2.0	2.2	(Times)
3	GOSDB	_	(_	
	GOGDB						

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
	GfOSDR	-					
Analog OSD Frequency Characteristics	GfOSDG	_	(Note T38)	_	-1.0	-3.0	dB
	GfOSDB	_					
	VOSD1R	_					
	VOSD1G	_		2.25	2.5	2.75	
	VOSD1B	_					
	VOSD2R	-					
Analog OSD Output Level	VOSD2G	_	(Note T39)	1.98	2.20	2.42	V
	VOSD2B	_					
	VOSD3R	_					
	VOSD3G	_		5.0	5.5	6.0	
	VOSD3B	_					
Analog OSD Mode On Voltage	VOSDON	_	(Note T40)	2.00	2.25	2.50	V
	τROSDYSR	_	_				
	τROSDYSG	1		_	20	100	
	тROSDYSB	1					
	tPROSDYSR	1					
	tPROSDYSG	_		_	30	100	
	tPROSDYSB	_					
Analog OSD Mode Transfer Characteristic	ΔtPROSDYS	-	(Note T41)	_	0	20	ns
Analog OSD Wode Translet Characteristic	τFOSDYSR	-	(Note 141)				115
	τFOSDYSG	-		_	15	100	
	тFOSDYSB						
	tPFOSDYSR	1					
	tPFOSDYSG	1		_	30	100	
	tPFOSDYSB	_					
	ΔtPFOSDYS	-		_	0	20	
RGB Output Self-Diagnosis	SCRGB	1	(Note T42)	1	Oper- ating	1	_

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT	
	l17a	_		0.08	0.1	0.125		
	l17b	_		0.08	0.1	0.125		
	I17c	_		0.8	1.0	1.3		
	l17d	_		2.0	2.5	3.2		
	I18a	_		0.08	0.1	0.125		
ACB Clamp Current	I18b	_	(Note T44)	0.08	0.1	0.125	mA	
ACB Clamp Current	I18c	_	(Note T44)	0.8	1.0	1.3	IIIA	
	I18d	_		2.0	2.5	3.2		
	I19a	_		0.08	0.1	0.125		
	I19b	_		0.08	0.1	0.125		
	I19c	_		0.8	1.0	1.3		
	I19d	_		2.0	2.5	3.2		
	γ1R	_		40	50	60	(105)	
	γ2R	_		60	70	80	(IRE)	
	Δ1R	_		0.75	1.5	2.25		
	Δ2R	_		-0.75	0.0	0.75	dB	
	Δ3R	_		-2.55	-3.3	-4.05		
	γ1G	_		40	50	60	(105)	
	γ2G	_	(Note T46)	60	70	80	(IRE)	
RGB γ Correction Characteristics	Δ1G	_		0.75	1.5	2.25	dB	
	Δ2G	_		-0.75	0.0	0.75		
	Δ3G	_		-2.55	-3.3	-4.05		
	γ1Β	_		40	50	60		
	ү2В	_		60	70	80	(IRE)	
	Δ1B	_		0.75	1.5	2.25		
	Δ2Β	_		-0.75	0.0	0.75	dB	
	Δ3Β	_		-2.55	-3.3	-4.05		
	VKA	_		1.90	2.00	2.10		
VK Output Characteristic	VK1	_	(Note T47)	25.0	35.00	45.0	V _{p-p}	
	VK2	_		60.0	70.00	80.0	(IRE)	
	ANG RMIN	_		47.0	53.0	59.0		
Base Band TINT Adjustment	ANG BMIN	_		47.0	53.0	59.0	٥	
Characteristics	ANG RMAX	_	(Note T51)	-51.0	-45.0	-39.0		
	ANG BMAX	_		-51.0	-45.0	-39.0		
Base Band TINT Adjustment Position	BUS BO	_	(Note T52)	C2	C6	CA	HEX	

Deflection stage

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT	
Sync. Separation Input Sensitivity Current	I _{IN38}	_	(Note D1)	12	20	30	μΑ	
V Separation Filter Pin Source Current	I _{OUT39}	_	(Note D2)	3.2	4.2	5.2	μA	
V Separation Level	V _{SEP}	_	(Note D3)	5.0	5.5	6.0	V	
H AFC Phase Detection Current Ratio	I _{DET}	_	(Note D4)	210	300	420	μΑ	
ITAL C Fliase Detection Cultert Ratio	ΔI _{DET}	_	(Note D4)	-5	0	+5	%	
Phase Detection Stop Period	T _{CO40}		(Note D5)	ı	262 ~ 10	l	(H)	
32* f _H VCO Oscillation Start Voltage	V _{VCO}	_	(Note D6)	3.7	4.0	4.3	V	
	V _{HON35}	_		4.7	5.0	5.3	V	
Horizontal Output Start Voltage	V _{BUS HON}	_	(Note D7)	1	1	1		
	V _{BUS} HOFF	_		1	0	1	_	
Horizontal Output Pulse Duty	T _{H35}	_	(Note D8)	38.5	40.5	42.5	%	
Phase Detection Stop Mode	f _{FR}	_	(Note D9)	15585	15734	15885	Hz	
Horizontal Output Free-Run Frequency	f _{HO}	_	(Note D10)	15585	15734	15885	Hz	
Horizontal Oscillation Frequency Range	f _{HMIN}	_	(Note D11)	14700	15000	15300	Hz	
Tronzontal Oscillation Frequency Trange	f _{HMAX}	_	(Note D11)	16500	16700	16900	112	
Horizontal Oscillation Control Sensitivity	βн		(Note D12)	250	300	350	Hz / 0.1V	
Horizontal Output Voltage	V _{H35}	_	(Note D13)	4.2	4.6	5.0	V	
Tionzonial Output Voltage	V _{L35}	_		_	0.15	0.3	V	
Power Supply Voltage Dependence of Horizontal Oscillation Frequency	Δf _{HV}	_	(Note D14)	-20	0	+20	Hz / V	
Temperature Dependence of Horizontal Oscillation Frequency	Δf _{HT}		(Note D15)	ı	60	70	Hz	
Horizontal Sync. Phase	S _{PH1}	_	(Note D16)	2.3	2.5	2.7	μs	
Tionzontal Cyric. I hase	S _{PH2}	_	(14016 1210)	0.2	0.3	0.4	μο	
Horizontal Picture Phase Adjustment Range	ΔH _{SFT}		(Note D17)	5.5	6.0	6.5	μs	
Horizontal Blanking Pulse Threshold	V _{HBLK1}	_	(Note D18)	4.7	5.0	5.3	V	
Honzontal Bialiking Fulse Hileshold	V _{HBLK2}	_	(NOTE D16)	0.8	1.1	1.4	v	
Curve Correction Characteristic	ΔH ₄₂	_	(Note D19)	2.3	2.5	2.7	μs	
H Cycle Black Peak Detection Disable	HBPS	_	(Note D20)	7.5	8.0	8.5	116	
Pulse	HBPW	_	(Note D20)	13.0	13.5	14.0	μs	
External Black Peak Detection Disable Pulse Threshold	BP _{V32}	_	(Note D21)	0.9	1.1	1.3	V	

CHARACTERISTICS	SYMBOL	TEST CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Clamp Pulse Start Phase	CPS	_	(Note D22)	2.8	3.0	3.2	μs
Clamp Pulse Width	CPW	_	(Note D22)	5.6	5.8	6.0	μs
HD Output Start Phase	HDS	_	(Note D23)	0.7	0.9	1.1	μs
HD Output Pulse Width	HD_W	_	(Note D23)	0.7	0.9	1.1	μs
HD Output Amplitude	V_{HD}	_	(Note D23)	4.7	5.0	5.3	V
Gate Pulse Start Phase	GP _S	_	(Note D24)	2.7	2.9	3.1	μs
Gate Pulse Width	GPW	_	(Note D24)	1.8	2.0	2.2	μs
Gate Pulse V Mask Period	T _{CO34}		(Note D25)	_	261 ≀ 10	ı	(H)
Sync. Out Low Level	V_{SY}	_	(Note D26)	0.0	0.3	0.5	V
Vertical Output Oscillation Start Voltage	V _{ON}	_	(Note D27)	4.1	4.4	4.7	V
Vertical Free-Run Frequency	f _{VO}	_	(Note D28)	_	53	١	Hz
Vertical Output Voltage	V_{VH}	_	(Note D29)	4.9	5.2	5.5	V
vertical Output Voltage	V_{VL}	_	(Note D29)	_	0	0.3	,
Service Mode Switching	VD _{NO}	_	(Note D30)	3.1	3.4	3.7	V
Vertical Bull In Bongo	f _{PL}	_	(Note D31)	_	225	_	(H)
Vertical Pull-In Range	f _{PH}	_	(Note D31)	_	297	_	(11)
Vertical Frequency Forced 263H	f _{V1}	_	(Note D32)	_	263	_	(H)
Vertical Frequency Forced 262.5H	f _{V2}	_	(Note D32)	_	262.5	_	(H)
Vertical Blanking Off Mode	V _{OFF}	_	(Note D33)	_	Check	_	_
Vertical Output Pulse Wieth	T _D	_	(Note D24)	44	46	48	
Vertical Output Pulse Width	T _W	_	(Note D34)	_	8	_	μs
	VR _{S1}	_					
RGB Output Vertical Blanking Pulse Start Phase	VG _{S1}	_	(Note D35)	44	46	48	μs
	VB _{S1}	_					
	VR _{S2}	_		_	22	_	
RGB Output Vertical Blanking Pulse Stop Phase	VG _{S2}	_	(Note D35)	_	22	_	(H)
	VB _{S2}	_] -		22	_	
V Cycle Black Peak Detection Disable Pulse (Normal)	VBP _{NORMAL}	_	(Note D36)	_	257 ≀ 28	_	(H)
V Cycle Black Peak Detection Disable Pulse (Zoom)	VBP _{ZOOM}	_	(Note D37)	_	229 ~ 56	_	(H)

Deflection correction stage

		TEST					
CHARACTERISTICS	SYMBOL	CIR- CUIT	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Vertical Ramp Amplitude	V _{P27}	_	(Note G1)	1.50	1.67	1.83	V _{p-p}
Vertical Amplification	G _V	_	(Note G2)	22	25	28	dB
Vertical Amp Maximum Output Voltage	V _{H24}	_	(Note G3)	2.5	3.0	3.5	V
Vertical Amp Minimum Output Voltage	V _{L24}	_	(Note G4)	_	0.0	0.3	٧
Vertical Amp Maximum Output Current	I _{MAX1}	_	(Note G5)	11	14	17	mA
Vertical NF Sawtooth Wave Amplitude	V _{P25}	_	(Note G6)	1.50	1.67	1.83	V _{p-p}
Vertical Amplitude Range	V _{PH}	_	(Note G7)	±36	±40	±44	%
Vertical Linearity Correction Maximum Value	Vλ	_	(Note G8)	±12	±15	±18	%
Vertical S Correction Maximum Value	V _S	_	(Note G9)	20	25	30	%
Vertical NF Center Voltage	V _C	_	(Note G10)	4.8	5.0	5.2	٧
Vertical NF DC Change	V _{DC}	_	(Note G11)	±100	±120	±140	mV
Vertical Amplitude EHT Correction	V _{EHT}	_	(Note G12)	8	9	10	%
E-W NF Maximum DC Value (Picture Width)	V _{H22}	_	(Note G13)	5.3	5.8	6.3	V
E-W NF Minimum DC Value (Picture Width)	V _{L22}	1	(Note G14)	1.75	1.90	2.05	٧
E-W NF Parabola Maximum Value (Parabola)	V _{PB}	_	(Note G15)	2.1	2.5	2.9	V _{p-p}
E-W NF Corner Correction (Corner)	V _{CR}	_	(Note G16)	1.0	1.2	1.4	V _{p-p}
Parabola Symmetry Correction	V _{TR}	_	(Note G17)	±10	±12.5	±15	%
E-W Amp Maximum Output Current	I _{MAX2}	_	(Note G18)	0.14	0.20	0.28	mA
AGC Operating Current 1	V _{AGC0}	_	(Note G19)	470	590	710	μΑ
AGC Operating Current 2	V _{AGC1}	_	(Note G20)	100	130	160	μA
Vertical Guard Voltage	V _{VG}	_	(Note G21)	1.80	2.00	2.20	٧
E / W Output Self-Diagnosis	V _{BUS} EW _{OFF}	_	(Note G22)		0	_	
E / W Output Sell-Diagnosis	V _{BUS} EW _{ON}	_	(14016-022)	_	1	_	
V-Out Output Self-Diagnosis	V _{BUS} V _{OFF}	_	(Note G23)	١	0	_	
v-out output seil-blaghosis	V _{BUS} V _{ON}	_	(Note G23)	١	1	_	
Vertical Blanking Check	V _{BLK1} V _{BLK2}	_	(Note G24)	_	Check		
	V _{21L}	_		0.20	0.25	0.30	
V Centering DAC Output	V _{21M} -	_	(Note G25)	2.20	2.30	2.35	V
	V _{21H}	_	_	4.20	4.30	4.35	1
V NFB Pin Input Current	l ₂₀	_	(Note G26)		10	900	nA

TEST CONDITIONS

Video stage

					(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)
NOTE	ITEM	SW ₅₄	SW MOD		MEASUREMENT METHOD
P ₁	#54 Voltage (Y Input Pedestal Clamp Voltage)	C	SW ₅₅	SW ₅₆ OPEN	 Set the bus control data to the preset value. Measure the #54 DC voltage V₅₄.
P ₂	#55 Voltage	С	OPEN	OPEN	 Set the bus control data to the preset value. Measure the #55 DC voltage V₅₅.
P ₃	#56 Voltage	С	OPEN	OPEN	 Set the bus control data to the preset value. Measure the #56 DC voltage V₅₆.
P ₄	#1 Voltage	С	OPEN	OPEN	 Set the bus control data to the preset value Measure the #1 DC voltage V₁.
P ₅	Y Input Pedestal Clamp Error Voltage	С	OPEN	OPEN	 Set the bus control data to the preset value. Set SW₅₄ to C (connect the Y input to AC-GND). Measure #56 with an oscilloscope as shown in the diagram and calculate ΔVPC. Calculate the voltage differences ΔVPC1 and ΔVPC0 when the Y mute is on (1) and off (0). #56 (DC transfer rate correction) #34 (FBP input)

Note 1: When testing, see the picture sharpness test circuit diagram.

Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

					(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)
NOTE	ITEM		W MOD		MEASUREMENT METHOD
P ₆	Y Input Pedestal Clamp Pulse Phase	SW ₅₄	SW ₅₅	OPEN	1) Set the bus control data to the preset value. 2) Set SW ₅₄ to B (connect V _{CC} (5 _V) to the Y input via a 20-kΩ resistor). 3) Measure #54 and #40 with an oscilloscope as shown in the diagram. Calculate TCL1 and TCL2. #54 (Y input) #40 (AFC 1)
P ₇	Y Input Dynamic Range	С	В	OPEN	 Set the bus control data to the preset value. Set SW₅₄ to C (connect the Y input to AC-GND) Set the unicolor to the center (100000), the brightness to the center (1000000), RGB cutoff to the center (10000000), the Y mute to OFF (0), and connect an external power supply to #54. Increase the supply voltage from V₅₄ and measure #13 (R_{OUT}). When the #13 voltage stops changing, substitute the supply voltage (V) in the formula below and calculate DR₅₄. DR₅₄ = V-V₅₄

Note 1: When testing, see the picture sharpness test circuit diagram.

NOTE	ITEM	(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)						
		SW ₅₄	SW MOD SW ₅₅	_	MEASUREMENT METHOD			
P ₈	#56 Output Impedance	C	В	OPEN	 Set the bus control data to the preset value Set SW₅₄ to C (connect the Y input to AC-GND). Connect the external power supply to #56 via ammeter A as shown in the diagram below. Adjust the power supply until the ammeter reads 0 amperes. Measure the ammeter current I56 when the power supply is increased by 0.1 V. Calculate Z56 from the following formula. Z56 = 0.1 [V] ÷ I56 [A] 			
P ₉	Black Stretching Amplifier Maximum Gain	Α	B ↓ A	OPEN	 Set the bus control data to the preset value. Set the black stretch start point to 001, turn the Y mute off (0), set SW₅₄ to A, and input a 500-kHz sine wave to TP54A. Use #54 to adjust the signal amplitude to 0.1 V_{p-p}. Set SW₅₅ to B (minimum gain) and measure the amplitude V_A of #56 Set SW₅₅ to A (maximum gain) and measure the amplitude V_B of #56. Calculate G_{BS} from the following formula. G_{BS} = V_B ÷ V_A 			

Note 1: When testing, see the picture sharpness test circuit diagram.

	ITEM	(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)						
NOTE		SW MODE			MEASUREMENT METHOD			
P ₁₀	Black Level Compensation	SW ₅₄	SW ₅₅	OPEN	 Set the bus control data to the preset value. Set SW₅₄ to C (connect the Y input to AC-GND), set SW₅₅ to A (maximum gain), turn the Y mute off (0), and turn the black level compensation on (set the black stretch start point to 000). Observe #56, measure ΔV, and calculate the following formula. B_{LC} [(IRE)] = (ΔV [mV] ÷ (0.7 × 10³) [mV]) × 100 [(IRE)] 			
P ₁₁	Black Peak Detection Level	С	С	OPEN	 Set the bus control data to the preset value. Turn the Y mute off (0) and connect #54 to an external power supply (PS). Turn the black level correction on (set the black stretch start point to 000). Increase the PS from 3V and measure the voltage VBP of #56 where the DC level of the picture period of #55 shifts from high to low. Calculate ΔVBP from the following formula. ΔVBP = VBP - V56 			

Note 1: When testing, see the picture sharpness test circuit diagram.

	ITEM	(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)							
NOTE		SW MODE SW ₅₄ SW ₅₅ SW ₅₆			MEASUREMENT METHOD				
-		SW ₅₄	SVV ₅₅	Svv ₅₆	4) 0 4 11 1 4 11 4 11 4 11 4 11				
	Black Stretching Start Point	B C ↓ A			Set the bus control data to the preset value.				
					2) Set SW ₅₄ to C (connect the Y input to AC-GND), set SW ₅₅ to B (minimum gain), turn the Y mute off (0), and set the black stretch start point to 001.				
					 Connect #54 to an external power supply (PS), increase the voltage from V₅₄, and plot the resulting change in voltage S₁ of #56. 				
					 Next, set SW₅₅ to A (maximum gain). Then, increase the voltage from V₅₄ as in 3) above and plot the resulting change in voltage S₂ of #56. 				
					5) Now set the black stretch point to 111 and plot S ₃ as in 3) above.				
					6) Use the diagram below to calculate the intersection VB_{001} of S_1 and S_2 , and the intersection VB_{111} of S_1 and S_3 . Use the following formals to calculate P_{B001} and P_{B111} , and calculate P_{B001} and P_{B111} from the formulas below. P_{B001} [(IRE)] = ((VB_{001} [V] - V_{56} [V] ÷ 0.7 [V]) × 100 [(IRE)] P_{B111} [(IRE)] = ((VB_{111} [V] - VB_{1111} [V] - VB_{11111} [V] - VB_{11111} [V] - VB_{111111} [V] - $VB_{111111111111111111111111111111111111$				
P ₁₂					#56				
				VB001 VB111 V56 S2 (black stretch 001) S3 (black stretch 111)					

Note 1: When testing, see the picture sharpness test circuit diagram.

NOTE SW MODE SW 54 SW 55 SW 56 SW						(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = $25 \pm 3 ^{\circ}\text{C}$)
2) Connect #54 to an external power supply (PS). 3) Turn the Y mute off (0), set the unicolor to the center (100000), set the brightness to the center (1000000), set RGB cutoff to the center (1000000), and observe #13 (R _{OUT}). 4) Use unicolor to adjust the difference in the #13 picture period DC level to 0.7 V when the power supply is set to V ₅₄ and V ₅₄ +0.7 V. 5) Applying V ₅₄ +0.7 V to #54 as shown in the diagram below, calculate ΔV ₁ of #13, then calculate ΔV ₂ of #13 when SW ₅₆ is on. 6) Connect a 2-kΩ resistor between #56 and C56 (1 μF) and calculate ΔV ₃ of #13. 7) Calculate GDTC and GDTR from the following formula. GDTC = ((ΔV ₂ [V] – ΔV ₁ [V]) + 0.7 [V]) GDTR = ((ΔV ₃ [V] – ΔV ₁ [V]) + 0.7 [V] V ₅₄ + 0.7 V SWS6 OPEN Picture period	NOTE	ITEM				MEASUREMENT METHOD
SW56 ON $ \text{or} \\ \text{or} \\ \text{2 k}\Omega \text{ resistor} \\ \text{inserted} $	P ₁₃		SW ₅₄	SW ₅₅	SW ₅₆	MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Connect #54 to an external power supply (PS). 3) Turn the Y mute off (0), set the unicolor to the center (1000000), set the brightness to the center (1000000), set RGB cutoff to the center (10000000), and observe #13 (R _{OUT}). 4) Use unicolor to adjust the difference in the #13 picture period DC level to 0.7 V when the power supply is set to V ₅₄ and V ₅₄ +0.7 V. 5) Applying V ₅₄ +0.7 V to #54 as shown in the diagram below, calculate ΔV ₁ of #13, then calculate ΔV ₂ of #13 when SW ₅₆ is on. 6) Connect a 2-kΩ resistor between #56 and C56 (1 μF) and calculate ΔV ₃ of #13. 7) Calculate GDTC and GDTR from the following formula. GDTC = ((ΔV ₂ [V] – ΔV ₁ [V]) + 0.7 [V]) + 0.7 [V] GDTR = ((ΔV ₃ [V] – ΔV ₁ [V]) + 0.7 [V]) + 0.7 [V] V ₅₄ + 0.7 V SW56 OPEN Picture period ΔV ₂ or 2 kΩ resistor ΔV ₂ or ΔV ₃ ΔV ₃

					(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = $25 \pm 3^{\circ}\text{C}$)
NOTE	ITEM	SW ₅₄	SW MOD	E SW ₅₆	MEASUREMENT METHOD
P ₁₄	Self-Diagnosis Y-IN	C ↓ A	B	OPEN	 Set the bus control data to the preset value. Set SW₅₄ to C (connect the Y input to AC-GND), connect #54 to an external power supply (PS), and turn read mode on. When the power supply is increased from V₅₄ to V₅₄ + 0.7 V, check that in read mode Y-IN changes from error to OK to error. Next, set SW₅₄ to A and input a sine wave from TG-7 to TP54. Apply a signal on #54 as shown in the diagram. Check that there is no problem with the Y IN in read mode.
P ₁₅	Y Mute	А	В	OPEN	 Set the bus control data to the preset value. Input a 100-kHz sine wave to TP54 and adjust #54 to 0.7 V_{p-p}. Turn the Y mute on (1) and measure the #56 amplitude VYM1. Turn the Y mute off (0) and measure the #56 amplitude VYM0. Calculate the following formula. GYM [dB] = 20 ׳og (VYM1 / VYM0)

					(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = $25 \pm 3^{\circ}\text{C}$)
NOTE	ITEM		SW MOD		MEASUREMENT METHOD
		SW ₅₄	SVV 55	SW ₅₆	4). Cot the hus control data to the present value
					Set the bus control data to the preset value.
					2) Set SW ₅₄ to A and input a sweep signal to TP54.
					3) Set the amplitude of #54 to 20 mV _{p-p} .
					4) Set the unicolor to the maximum (111111), set the brightness to the center (1000000), set the RGB cutoff to the center (10000000), turn the Y mute off (0), turn test mode on (0), and set the picture sharpness to the maximum (111111).
					5) Connect an emitter-follower to TP13 (R OUT) and use a spectrum analyzer to observe TP13 (R OUT).
					6) Seek the peak point frequency F _{AP} as shown in the diagram.
P16	Sharpness Peak Frequency	A	В	OPEN	Gain [dB] Frequency [Hz]

					(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = 25 ± 3°C)
NOTE	ITEM		SW MOD		MEASUREMENT METHOD
		SW ₅₄	SW ₅₅	5vv ₅₆	
					Set the bus control data to the preset value.
					2) Set SW ₅₄ to A and input a sine wave to TP54A.
					3) Set the amplitude of #54 to 20 mV _{p-p} .
	Observation Construct Decree	A	В	OPEN	4) Set the unicolor to the maximum (111111), the brightness to the center (1000000), RGB cutoff to the center (10000000), and turn the Y mute off (0).
P ₁₇	Sharpness Control Range				 Set the picture sharpness to the maximum (111111). Connect an emitter-follower to TP13 (R OUT). When the frequencies are 100 kHz and 2.4 MHz, measure the respective V₁₀₀ and V₂₄ amplitudes.
					6) Next, set the picture sharpness to the minimum (000000). As in 5), when the frequencies are 100 kHz and 2.4 MHz, measure the V ₁₀₀ and V ₂₄ amplitudes respectively.
					7) Calculate G_{MAX} and G_{MIN} from the following formula. G_{MAX} , G_{MIN} [dB] = 20 × \log (V ₂₄ ÷ V ₁₀₀)
	Sharpness Control Center Characteristics			OPEN	1) Repeat steps 1) to 4) of P ₁₇ .
P ₁₈			АВ		2) Set the picture sharpness to the center (100000)
		Α			3) Connect an emitter-follower to TP13 (R OUT). When the frequencies are 100 kHz and 2.4 MHz, measure the V_{100} and V_{24} amplitudes respectively.
					4) Calculate G _{CEN} from the following formula. G _{CEN} [dB] = 20 ×log (V ₂₄ ÷ V ₁₀₀)

					(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = $25 \pm 3^{\circ}\text{C}$)
NOTE	ITEM	SW ₅₄	SW MOD	E SW ₅₆	MEASUREMENT METHOD
P ₁₉	Between Y IN and R OUT Delay Time	A	B	OPEN	1) Set the bus control data to the preset value. 2) Set SW ₅₄ to A and input a 2T pulse (STD) signal from TG-7 to TP54A. 3) Set the unicolor to the maximum (111111), the brightness to the center (1000000), turn the Y mute off (0), and set the picture sharpness to the center (100000). 4) Connect an emitter-follower to TP13 (R OUT) to observe TP13 (R OUT). 5) Calculate Ty from the following diagram. 2T pulse (STD) Y IN (#54) Ty

Note 1: When testing, see the picture sharpness test circuit diagram.

Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

					(TEST CONDITIONS V _{CC} = 9 V / 5 V, Ta = 25 ± 3°C)
NOTE	ITEM	SW ₅₄	SW MOD SW ₅₅	E SW ₅₆	MEASUREMENT METHOD
		- J -			 Set the bus control data to the preset value. Set SW₅₄ to A, turn the Y mute off, and input a sweep signal to TP54.
P ₂₀	VSM Peak Frequency	A	В	OPEN	3) Set the #54 amplitude to 100 mV _{p-p} . 4) Observe TP1 (VSMOUT) with a spectrum analyzer and seek the peak point frequency FVSM.
P ₂₁	VSM Gain	А	В	OPEN	 Set the bus control data to the preset value. Set SW₅₄ to A, turn the Y mute off (0), and input the FVSM sine wave (see P₂₀ above) to TP54. Set the amplitude of #54 to 100 mV_{p-p}. When the VSM gain is on (0), measure the TP1 (VSMOUT) amplitude V_{VSM0} (V_{p-p}). Next, measure the TP1 (VSMOUT) amplitude V_{VSM1} (V_{p-p}) when the VSM gain is off (1). Calculate G_{VSM0} and G_{VSM1} by the following formulas. G_{VSM0} [dB] = 20 ×log (V_{VSM0} ÷ 0.1) G_{VSM1} [dB] = 20 ×log (V_{VSM1} ÷ 0.1)
P22	VSM Muting Threshold Voltage	Α	В	OPEN	1) Repeat steps 1) to 3) of P ₂₁ . 2) Connect the external power supply (PS) to #10 and increase the voltage from 0.5 V. Read the PS voltage V _{VM10} when the TP1 (VSMOUT) amplitude disappears, as shown in the following diagram. 3) Set SW ₆ to open, connect #6 to an external power supply, increase the voltage from 1.5 V. When the TP1 (VSMOUT) amplitude disappears as shown in the following diagram, read the PS voltage V _{VM6} .

					(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, $Ta = 25 \pm 3^{\circ}\text{C}$)
NOTE	ITEM	SW ₅₄	SW MOD SW ₅₅		MEASUREMENT METHOD
P ₂₃	VSM High Speed Muting Response Time	A A	B B	OPEN	1) Repeat steps 1) to 3) of P ₂₁ above. 2) Set SW ₆ to open, input a pulse as shown below to #6 (Ys / Ym IN), and measure the response times T _{HM1} and T _{HM2} at that input. 3) Similarly, input the pulse to #10 (OSD Ys IN) and measure the response times T _{HM3} and T _{HM4} at that input. Square wave (50 kHz, 3 V _{p-p}) VVM10 [V] or VVM6 [V] #6 waveform or #10 waveform THM1 (3) THM1 (3) Mute period Mute period

NOTE ITEM SW MODE MEASUREMENT METHOD							(TEST CONDITIONS $V_{CC} = 9 \text{ V} / 5 \text{ V}$, Ta = $25 \pm 3 ^{\circ}\text{C}$)
1 1134 3133 3130	NOTE	ITEM					MEASUREMENT METHOD
 Set the bus control data to the preset value. Input a signal like that shown in the diagram below to TP54, turn the Y mute off (0), and adjust the amplitude of to 0.7 V_{p-p}. Set the unicolor to the maximum (111111), increase the picture sharpness from the minimum to a level where OUT waveform is not distorted. 	P ₂₄	VSM Phase	SW	7 ₅₄ S	SW ₅₅	SW ₅₆	MEASUREMENT METHOD 1) Set the bus control data to the preset value. 2) Input a signal like that shown in the diagram below to TP54, turn the Y mute off (0), and adjust the amplitude of #54 to 0.7 V _{p-p} . 3) Set the unicolor to the maximum (111111), increase the picture sharpness from the minimum to a level where the R OUT waveform is not distorted. 4) Measure the phase differences T _{VM24} , T _{VMFP} , and T _{VM2T} between TP1 (VSMOUT) and TP13 (R OUT) when the signal is an FVSM sine wave, a 2T pulse, and a 2.4-MHz signal, as shown in the diagram below. (To make a waveform at TP1, reverse the waveform at TP13 using an oscilloscope.) TVM24, TVMFP Sine wave TP13 TVM27 TP13 TVM27

Note 1: When testing, see the picture sharpness test circuit diagram. Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Chroma stage

				(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM	SW N	MODE SW ₄₆	MEASUREMENT METHOD
			·	Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 1 : 1
C ₁	ACC Characteristics	В	ON	2) When the chroma input amplitude levels are set to 10, 30, 300, and 600 mV _{p-p} , measure the output amplitudes va10, va30, va300, and va600 of the R-Y output pin (TP48).
				3) Calculate A = va30 / va600.
				1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 300 mV _{p-p} : 300 mV _{p-p}
C ₂	Color Difference Output	В	ON	2) Change the burst phase so that bar 2 of the B-Y output pin (TP47) output waveform is the bottom peak and bar 7 is the top peak.
02	Level	J		3) Measure the amplitude (v _B) of the B-Y output pin (TP47).
				4) Set the burst phase to 180°.
				5) Measure the amplitude (v _R) of the R-Y output pin (TP48).
C ₃	Color Difference Output Relative Amplitude	В	ON	1) Calculate the relative amplitude v_{RB} from the following formula using the values obtained in steps 3) and 5) of C_{02} above. $v_{RB} = v_R / v_B$
				Input a rainbow signal (C-1) to the chroma input pin (TP45). Burst : chroma = 200 mV _{p-p} : 200 mV _{p-p}
	Color Difference Output Demodulation Angle			 Calculate the demodulation angles θB_{cnt} and θR_{cnt} of the B-Y output pin (TP47) and the R-Y output pin (TP48) using the formulas and diagram below.
C ₄		В	ON	$\theta \text{ Bcnt} = 0^{\circ} - \tan^{-1} \left[\frac{1}{\frac{2A}{B} + \sqrt{3}} \right] - 15^{\circ}$ $\theta \text{ Rcnt} = 90^{\circ} - \tan^{-1} \left[\frac{1}{\frac{2A}{B} + \sqrt{3}} \right] - 15^{\circ}$
C ₅	Color Difference Output Relative Phase	В	ON	1) Calculate the relative phase θ_{RB} from the following formula using the values obtained in C ₀₄ above. $\theta_{RB} = \theta_{Rcnt} - \theta_{Bcnt}$

Note 1: Where the bus data are not specified, set the preset values.

			$(#16 V_{CC} = 9 V, #37 V_{CC} = 9 V, #51 V_{CC} = 5 V, Ta = 25 \pm 3 ^{\circ}C)$						
NOTE	ITEM		NODE SW ₄₆	MEASUREMENT METHOD					
				Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma = 300 mV _{p-p} : 300 mV _{p-p}					
C ₆	Color Difference Output C ₆ Tint Adjustment	В	ON	2) Measure the demodulation angles $\theta_{B'}$ and $\theta_{R'}$ in the outputs with the tint set to the maximum (subaddress (03H), data (FE)). Calculate θ_{Bmax} and θ_{Rmax} by the following formulas. $\theta_{Bmax} = \theta_{B'} - \theta_{Bcnt}$ $\theta_{Rmax} = \theta_{R'} - \theta_{Rcnt}$					
	Characteristics			3) Measure the demodulation angles θ_B " and θ_R " in the outputs with the tint set to the minimum (subaddress (03H), data (00). Calculate θ_{Bmin} and θ_{Rmin} by the following formulas. $\theta_{Bmin} = \theta_B$ " $-\theta_{Bcnt}$ $\theta_{Rmin} = \theta_R$ " $-\theta_{Rcnt}$					
C ₇	Supply Voltage Dependence of Color Difference Output	В	ON	 1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 300 mV_{p-p}: 300 mV_{p-p} 2) As in C₀₂, measure the amplitudes ΔVBp and ΔVRp of the B-Y output pin (TP47) and R-Y output pin (TP48) when the 5-V V_{CC} is set to 5 V + 0.3 V. Calculate the amplitude ratios BVp and RVp when the 5-V V_{CC} is set to 5 V. BVp =					
C ₈	Identification Sensitivity	В	ON	 Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 1:1 Gradually reduce the input signal amplitude from 100 mV_{p-p}. When the B-Y output pin (TP47) signal disappears (when the current is DC), measure the input signal amplitude v_{CB}. Gradually increase the input signal amplitude from 0 mV_{p-p}. When a demodulation signal appears on the B-Y output pin (TP47), measure the input signal amplitude v_{BC}. 					
C ₉	Bus Read Identification	В	ON	1) Perform the same tests as above while observing the bus read: When the input signal amplitude is v _{CB} , check that the first bit is set to 0 (bCB). When the input signal amplitude is v _{BC} , check that the first bit is set to 1 (bBC).					

				(#16 V_{CC} = 9 V, #37 V_{CC} = 9 V, #51 V_{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM		MODE SW ₄₆	MEASUREMENT METHOD
C ₁₀	Color Difference Output Voltage Difference in 1H Period	В В	ON ON	1) Input no more than 300-mV _{p-p} as a burst signal to chroma input pin (TP45). 2) Measure the DC voltage difference (vBH) between the H blanking period and picture period of the B-Y output pin (TP47). 3) Measure the DC voltage difference (vRH) between the H blanking period and picture period of the R-Y output pin (TP48). Burst Input signal H blanking period Output signal Picture period
C ₁₁	Color Difference Output Voltage Difference Every 1H Period	В	ON	 Input no more than 300-mV_{p-p} as a burst signal to chroma input pin (TP45). Measure the DC voltage difference (vBG) between the H picture period and H + 1 picture period of the B-Y output pin (TP47). Measure the DC voltage difference (vRG) between the H picture period and H + 1 picture period of the R-Y output pin (TP48).
C ₁₂	Color Difference Output DC Voltage	В	ON	 Input no more than 300-mV_{p-p} as a burst signal to chroma input pin (TP45). Measure the picture period DC voltage V_B of the B-Y output pin (TP47). Measure the picture period DC voltage V_R of the R-Y output pin (TP48).
C ₁₃	Difference between DC Voltage Axes of Color Difference Output	В	ON	Use the following formula to calculate the difference (V _{RB}) between the voltage axes from the following formula using the values obtained in C ₁₂ above. V _{RB} = V _R - V _B
C ₁₄	X'tal Free-Run Frequency	А	ON	 No signal input to the chroma input pin (TP45) (set SW₄₅ to A). Observe the CW output pin (TP50) and measure the output frequency X_f.

			(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)					
NOTE	ITEM	SW M SW ₄₅		MEASUREMENT METHOD				
				1) No signal input to the chroma input pin (TP45) (set SW ₄₅ to A).				
				2) Set SW ₄₆ to open and connect an external power supply to the APC filter pin (#46).				
				 Change the voltage of external power supply to a value regarded as Vc3, where the output frequency of the CW output pin (TP50) is 3.579545 MHz (X_f). 				
C ₁₅	APC Frequency Control	А	OFF	4) Measure the CW output frequencies X_f (+100) and X_f (-100) for Vc3 + Δ Vc3 (±100 mV). Calculate the free-run sensitivity β_f from the following formula.				
	Sensitivity			$\beta_{f} = \frac{X_{f}(+100) - X_{f}(-100)}{200}$				
				1) Input a 3.579545-MHz sine wave (300 mV _{p-p}) to the chroma input pin (TP45).				
C ₁₆	APC Pull-In / Hold Range	В	3 ON	2) Vary the input sine wave frequency in ± 10 -Hz steps from 3.579545 MHz. When the B-Y output pin (TP47) picture period amplitude changes, measure the difference between 3.579545 MHz and the varied sine wave frequencies: on the plus side, f_{h+} , and on the minus side, f_{h-} (hold).				
				3) Increase and decrease the above measured values by 1 kHz: (f_{h+}) +1 kHz and (f_{h-}) -1 kHz. Adjust to approximately 3.579545 MHz in ±10-Hz steps. When the B-Y output pin (TP47) picture period amplitude changes, measure the difference from 3.579545 MHz: on the plus side, f_{p+} , and on the minus side, f_{p-} (pull-in).				
C ₁₇	Residual Carrier Level	В	ON	 Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 300 mV_{p-p}: 300 mV_{p-p} 				
				2) Measure the color subcarrier leak levels v_{BNo} and v_{RNo} of the B-Y output pin (TP47) and the R-Y output pin (TP48).				
C ₁₈	Residual Higher Harmonic Level	В	ON	 Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 300 mV_{p-p}: 300 mV_{p-p} 				
	1000			2) Measure the higher harmonic levels v _{BHN} and v _{RHN} of the B-Y output pin (TP47) and the R-Y output pin (TP48).				

				$(#16 V_{CC} = 9 V, #37 V_{CC} = 9 V, #51 V_{CC} = 5 V, Ta = 25 \pm 3^{\circ}C)$
NOTE	ITEM	SW N SW ₄₅	MODE SW ₄₆	MEASUREMENT METHOD
				1) Connect the V_{CC} (5 V) via a 750 Ω resistor to the R-Y output pin (TP48).
				2) Input a 3.579545-MHz sine wave (50 mV _{p-p}) to the chroma input pin (TP45).
				3) Set to BPF mode (subaddress (03H), data (80)).
				4) Set f ₀ of the sine wave to (3.579545 M - 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GB _L).
C ₁₉	TOF-BPF Characteristics B ON	5) Set f ₀ of the sine wave to (3.579545 M+1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GB _H).		
				6) Set to TOF mode (subaddress (03H), data (81)).
				7) Set f ₀ of the sine wave to (3.579545 M - 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GT _L).
				8) Set f ₀ of the sine wave to (3.579545 M + 1 M) Hz, measure the output amplitude of TP48, and calculate the gain from the input (GT _H).
C ₂₀	CW Output Amplitude	В	ON	 Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 300 mV_{p-p}: 300 mV_{p-p}
	, , , , , , , , , , , , , , , , , , , ,			2) Measure the amplitude vCW of the CW output pin.

Color difference stage

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM	SW ₆	SW N SW ₄₅	MODE SW ₅₂	SW ₅₃	MEASUREMENT METHOD
A ₁	Color Difference Input Clamp Voltage	С	A	A	A	 Connect the color difference input pin to AC-GND. (Set SW_{52A} and SW_{53A} to A.) Measure the voltage V_{RY} of the R-Y input pin (#52) and the voltage V_{BY} of the B-Y input pin (#53).
A ₂	Color Difference Input / Output Delay Time	С	А	В	В	 Set to external color difference input mode (subaddress (05H), data (81)). Now set as follows: Unicolor: maximum (subaddress (00H), data (3F)) Brightness: maximum (subaddress (01H), data (7F)) Color: center (subaddress (02H), data (40)). Set SW_{52A} and SW_{53A} to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53).
A ₃	Unicolor Adjustment Characteristics	С	А	В	В	 Set to external color difference input mode (subaddress (05H), data (81)) Now set as follows: Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)) Relative phase amplitude : standard (subaddress (12H), data (00)). Set SW_{52A} and SW_{53A} to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53). f₀ = 100 kHz, picture period amplitude = 0.2 V_{p-p} Set unicolor to the maximum (subaddress (00H), data (3F)). Measure the RUmax, the amplitude of the R output (TP13), and BUmax, the amplitude of B output (TP15). Set unicolor to the minimum (subaddress (00H), data (00)). Measure the RUmin, the amplitude of the R output (TP13), and BUmin, the amplitude of B output (TP15). Calculate the unicolor adjustment characteristics uR and uB by the following formulas. uR = 20Log RUmin RUmax

Note 1: When testing, see the picture sharpness test circuit diagram.

Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM			ODE		MEASUREMENT METHOD
		SW_6	SW ₄₅	SW ₅₂	SW ₅₃	ine too tement me mos
A ₄	Color Adjustment Characteristics	С	A	В	В	1) Set to external color difference input mode (subaddress (05H), data (81)) 2) Now set as follows: Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Relative phase amplitude : standard (subaddress (12H), data (00)). 3) Set SW _{52A} and SW _{53A} to B. Input signal C-2 to the R-Y input pin (TP52) and the B-Y input pin (TP53). f ₀ = 100 kHz, picture period amplitude = 0.2 V _{p-p} 4) Set the color to the maximum (subaddress (02H), data (7F)). Measure RCmax, the amplitude of the R output (TP13), and BCmax, and the amplitude of the B output (TP15). 5) Set the color to the center (subaddress (02H), data (40)). Measure RCcnt, the amplitude of the R output (TP13), and BCcnt, the amplitude of the B output (TP15). 6) Set the color to the minimum (subaddress (02H), data (00)). Measure RCmin, the amplitude of the R output (TP13), and BCmin, the amplitude of the B output (TP15). 7) Calculate the color adjustment characteristics cR _{max} , cR _{min} , cB _{max} , and cB _{min} by the following formulas. cR _{max} = 20Log RC _{MAX} /RC _{CNT} cR _{min} = 20Log RC _{MIN} /RC _{CNT} cB _{min} = 20Log RC _{MIN} /BC _{CNT}

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM	SW ₆	SW N	MODE SW ₅₂	SW ₅₃	MEASUREMENT METHOD
A ₅	RGB Output Half-Tone Characteristics	C Or B	8W45	A A	A A	1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 200 mV _{p-p} : 200 mV _{p-p} 2) Now set as follows: Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)) Relative phase amplitude : standard (subaddress (12H), data (00)). 3) Measure the amplitudes v _{Ro} , v _{Go} , and v _{Bo} of the R output pin (TP13), the G output pin (TP14), and the B output pin (TP15). 4) Set SW ₆ to B and repeat the test in 3) above. Measure the amplitudes v _{RH} , v _{GH} , and v _{BH} . 5) Calculate the half-tone characteristics v _{RHo} , v _{GHo} , and v _{BHo} by the following formulas. V _{RHo} = 20Log V _{RH} v _{GO} v _{GHO} v _{GHO} v _{BHO} = 20Log V _{BH} v _{BO}
A ₆	RGB Output Amplitude	С	В	Α	Α	Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 200 mV _{p-p} : 200 mV _{p-p} Now set as follows: Unicolor: maximum (subaddress (00H), data (3F)) Brightness: maximum (subaddress (01H), data (7F)) Color: center (subaddress (02H), data (40)). 3) Switch the relative phase amplitude (subaddress (12H)) and measure the amplitudes (peak values) of the RGB outputs (TP13, TP14, TP15) according to the table below. Subaddress (12H) data TP13 TP14 TP15 STD (00) VRSTD VGSTD VBSTD DVD (40) VRDVD VGDVD VBDVD TSB (80) VRTSB VGTSB VBTSB DTV (C0) VRDTV VBDTV
A7	RGB Output Relative Amplitude	С	В	Α	А	1) Using the values obtained in A_{06} above, calculate the relative amplitudes by the following formulas. $ v_{RB}***=\frac{v_R***}{v_B***} $

Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

TA1310N

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM			/IODE		MEASUREMENT METHOD
		SW ₆	SW ₄₅	SW ₅₂	SW ₅₃	WE TOOK EWENT WE THOS
A ₈	RGB Output Demodulation Angle	С	В	Α	А	 Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 200 mV_{p-p}: 200 mV_{p-p} Now set as follows: Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)). Adjust the tint so that the waveform angle of the B-Y output pin (TP47) is 0°. Switch the relative phase amplitude (subaddress (12H)) and measure the phase of the RGB outputs (TP13, TP14, TP15) according to the table below. Subaddress (12H) data TP13 TP14 TP15 STD (00)
A ₉	RGB Output Relative Phase	С	В	А	А	1) Using the values obtained in A_{08} above, calculate the relative amplitudes by the following formulas. $\theta_{RB^{***}} = \theta_{R^{***}} - \theta_{B^{***}} = \theta_{G^{***}} - \theta_{B^{***}}$

Note 1: Where the bus data are not specified, set the preset value.

Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

NT METHOD
TI WETTIOD
W ₄₅ to A). (00H), data (3F)) (01H), data (7F)) 12H), data (00)). R-Y input pin (TP52) and the B-Y input pin (TP53). ss (05H), data (81)). utput pin (TP13) is 2 V _{p-p} . ss (05H), data (80)). 3) and calculate the amount of crosstalk.

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM			/ODE		MEASUREMENT METHOD
		SW ₆	SW ₄₅	SW ₅₂	SW ₅₃	WEAGALWEAT WETTOD
						1) Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst: chroma = 200 mV _{p-p} : 200 mV _{p-p}
						2) Now set as follows: Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Relative phase amplitude : standard (subaddress (12H), data (00)).
						3) Set SW _{52A} and SW _{53A} to A.
	Color Difference					4) Set to internal color difference input mode (subaddress (05H), data (80)).
A ₁₂	INT→EXT	С	В	Α	Α	5) Adjust the color data so that the amplitude of the R output pin (TP13) is 2 V _{p-p} .
	Crosstalk					6) Set to external color difference input mode (subaddress (05H), data (81)).
						7) Measure the amplitude v_{XIR} of the R output pin (TP13) and calculate the amount of crosstalk. $XIER = 20Log \frac{v_{XIR}}{2}$
						8) Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes. $XIEG = 20Log \frac{VXIG}{2} \qquad XIEB = 20Log \frac{VXIB}{2}$

						(#16 V _{CC} = 9 V, #37 V _{CC} = 9 V, #51 V _{CC} = 5 V, Ta = 25 ± 3°C)
NOTE	ITEM		SW N	-		MEASUREMENT METHOD
		SW ₆	SW ₄₅	SW ₅₂	SW ₅₃	MEAGENT METHOD
A ₁₃	Color γ Characteristics	C C	SW45	A A	A A	 Set to external color difference input mode (subaddress (05H), data (81)). Now set as follows: Unicolor
						Fig.①

Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Y stage

			$(#16 V_{CC} = 9 V, #37 V_{CC} = 9 V, #51 V_{CC} = 5 V, Ta = 25 \pm 3^{\circ}C)$
NOTE	ITEM	SW MODE SW ₄₅	MEASUREMENT METHOD
Y ₁	Sync Input~DL Output AC Gain	А	 Input signal C-2 to the Sync Input pin (TP38). f₀ = 100 kHz, picture period amplitude = 0.2 V_{p-p} Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v_{43off} of the DL output (TP43). Calculate the gain from the input (GYoff) by the formula shown below. Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v_{43on} of the DL output (TP43). Calculate the gain from the input (GYon) by the formula shown below. GYoff = 20Log
Y ₂	Sync Input~DL Output Frequency Gain	А	 Input signal C-2 to the Sync Input pin (TP38). f₀ = 8 MHz, picture period amplitude = 0.2 V_{p-p} Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v_{438Moff} of the DL output (TP43). Calculate the gain from the input (GfYoff) by the formula shown below. Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude v_{438Mon} of the DL output (TP43). Calculate the gain from the input (GfYon) by the formula shown below. GfYoff = 20Log
Y ₃	Sync Input~DL Output Dynamic Range	А	 Input signal C-3 to the Sync Input pin (TP38). When the amplitude A of signal C-3 is increased from 0, observe the change in the picture period amplitude of the DL output (TP43). With DL mode turned on and off, when the output amplitude stops changing in a linear direction, measure the input signal amplitude A.
Y ₄	Sync Input~DL Output Transfer Characteristics	А	 Input signal C-2 to the Sync Input pin (TP38). f₀ = 100 kHz, picture period amplitude = 0.2 V_{p-p} Turn DL mode on (subaddress (12H), data (20)) and measure the amount of delay TYLD from the Sync Input (#38) to the DL output (TP43).

Note 1: Where the bus data are not specified, set the preset value.

Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Text stage

NOTE	ITEM			CVV V	ODE & S	IID ADD	(T	TEST CC	OITION	NS V _{CC} :	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	I I EIVI	S ₀₃	S ₀₄	S ₀₅	S ₀₆	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 54.
T ₁	AC Gain	A	А	Α	OFF	А	Α	A	OFF	Α	2) Measure the picture period amplitudes of pins 13, 14, and 15. (v ₁₃ , v ₁₄ , v ₁₅)
. ,											3) G _R = v ₁₃ / 0.2 G _G = v ₁₄ / 0.2 G _B = v ₁₅ / 0.2
											1) Input signal 1 (f = 8 MHz, picture period amplitude = $0.2 V_{p-p}$) to pin 54.
											2) Measure the picture period amplitudes of pins 13, 14, and 15. (v ₁₃ 8 MHz, v ₁₄ 8 MHz, and v ₁₅ 8 MHz).
T ₂	Frequency Characteristics	A	А	A	OFF	Α	Α	A	OFF	Α	3) Using the values obtained in T ₀₁ above, calculate the frequency characteristics from the following formulas. G _{fR} = 20 ׳og (v ₁₃ 8 MHz / v ₁₃) G _{fG} = 20 ׳og (v ₁₄ 8 MHz / v ₁₄) G _{fB} = 20 ׳og (v ₁₅ 8 MHz / v ₁₅)
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 54.
Т3	Unicolor Adjustment Characteristics	A	А	А	OFF	Α	Α	А	OFF	А	2) When the subaddress (00, unicolor) data are changed to the maximum (3F), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. MAX CNT MIN (vu , vu , vu)
											3) Calculate the maximum, minimum amplitude ratio for unicolor in decibels. (Δv_{u})
											1) Input signal 2 to pin 54 and adjust the picture period amplitude input of pin 13 to 1 V _{p-p} .
T4	Brightness Adjustment Characteristics	A	А	А	OFF	А	А	А	OFF	A	2) When the subaddress (01, brightness) data are changed to the maximum (FF), the center (C0), and the minimum (80), measure the picture period DC voltage of pin 13. (Vbr , Vbr , Vbr)
T5	Brightness Control	А	А	А	OFF	А	Α	А	OFF	А	Using the values obtained in T ₀₄ above, calculate the brightness sensitivity from the following formula.
	Sensitivity										2) $Gbr = (Vbr^{MAX} - Vbr^{MIN}) / 128$

							(TEST CC	ONDITION	NS V _{CC} :	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	SUB ADD S ₀₇	RESS &	DATA S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
Т ₆	White Peak Slice Level	A	А	A	OFF	A	A	A	OFF	A	 Change the bus data and set the sub-contrast to the maximum. Input signal 2 to pin 54 and gradually increase the amplitude. When pin 13's picture period is clipped, measure the picture period amplitude of pin 13.
Т ₇	Black Peak Slice Level	A	А	А	OFF	А	Α	А	OFF	С	Apply an external power supply to pin 54 and gradually decrease the voltage from 3.7 V. When their picture periods are clipped, measure the picture period amplitudes of pins 13, 14, and 15
T ₈	DC Restoration	A	A	A	OFF	Α	Α	A	OFF	Α	 1) Input the TG7 stair-step signal to pin 54. 2) Adjust the unicolor data so that the pin 13 stair-step output signal is 1.25 V_{p-p}. 3) When the stair-step signal APL is changed from 10% to 90%, measure the voltage change at point A in the diagram below. 4) Repeat steps 1) to 3) above on pins 14 and 15. Change APL Pin 54 input signal Pin 13, 14, 15 output signals

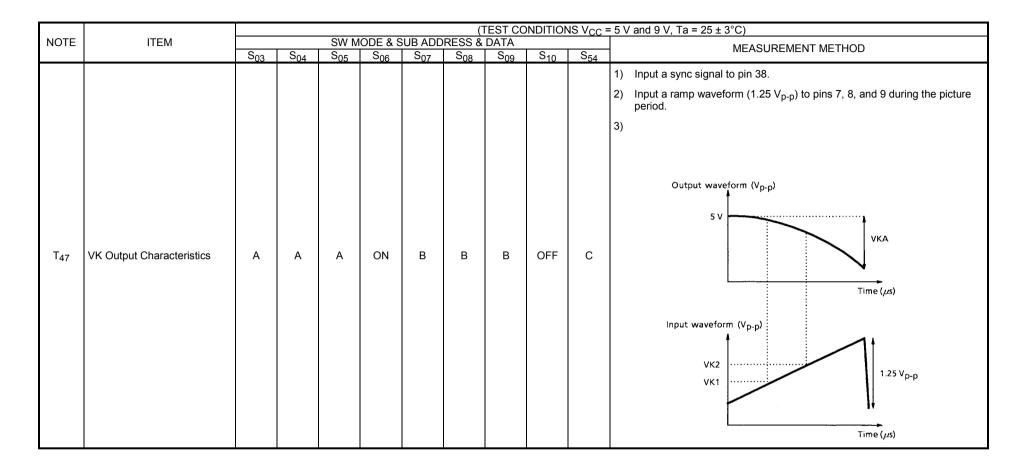
							(TEST CO	ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW N	10DE & S S ₀₆	SUB ADD	S ₀₈	S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
T ₉	RGB Output S / N	A	A	A	OFF	A	A	A	OFF	С	 Measure the picture period noise levels of pins 13, 14, and 15 with an oscilloscope. (n₁₃, n₁₄, n₁₅ (V_{p-p})) Calculate the S / N for each pin. N₁₃ = -20 × Log (2.5 / (0.2 × n₁₃)) N₁₄ = -20 × Log (2.5 / (0.2 × n₁₄)) N₁₅ = -20 × Log (2.5 / (0.2 × n₁₅))
T ₁₀	RGB Output Emitter-Follower Drive Current	А	А	А	OFF	А	А	А	OFF	С	 Connect a 3.5-V external power supply to pin 13 via a 100-Ω resistor (l#13) and measure the sink current on pin 13. Perform the same test on pins 14 and 15. (l#14, l#15)
T ₁₁	RGB Output Temperature Coefficient	А	Α	А	OFF	А	А	Α	OFF	С	 When the temperature changes through the range -20°C to +65°C, measure the changes in the picture period amplitudes of pins 13, 14, and 15. Calculate the voltage changes per degree of temperature. (Δt13, Δt14, Δt15)
T ₁₂	Half-Tone Characteristics	A	А	А	OFF	А	А	А	OFF	А	 Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V_{p-p}) to pin 54. Measure the picture period amplitude of pin 13. (v_{13A}) Apply 1.5 V DC to pin 6. Measure the picture period amplitude of pin 13. (v_{13B}) G_{HT} = v_{13B} / v_{13A}
T ₁₃	Half-Tone ON Voltage	A	А	А	OFF	Α	Α	А	OFF	А	 Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V_{p-p} to pin 54. Connect an external power supply to pin 6 and gradually increase the voltage from 0 V. When the picture period amplitude of pin 13 changes, measure the pin 3 voltage. (V_{HT})
T ₁₄	V-BLK Pulse Output Level	А	А	А	OFF	А	А	А	OFF	С	Measure the voltages of pins 13, 14, and 15 during the vertical blanking period. (V _{VR} , V _{VG} , V _{VB})
T ₁₅	H-BLK Pulse Output Level	А	А	А	OFF	А	A	А	OFF	С	Measure the voltages of pins 13, 14, and 15 during the horizontal blanking period. (VHR, VHG, VHB)

							(TEST CO	ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	SUB ADD	S ₀₈	S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
T ₁₆	Blanking Pulse Delay Time	A	A	A	OFF	A	A	A	OFF	С	 Measure t_{dON} and t_{dOFF} using the signal input to pin 34 (FBN-IN) (A below) and the signals output from pins 13, 14, and 15 (B below). (A) Signal input to pin 34 (B) Signals output from pins 13, 14, and 15
T ₁₇	Sub-Contrast Control Range	A	А	А	OFF	А	А	А	OFF	А	 Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V_{p-p}) to pin 54. When the subaddress (0F, sub-contrast) data are changed to the maximum (8F), the center (88), and the minimum (80), measure the picture period amplitude of pin 13. Calculate the maximum and minimum amplitude ratios in relation to the sub-contrast center in decibels. (Δv_{su}+, Δv_{su}-)
T ₁₈	RGB Output Voltage	А	Α	Α	OFF	Α	Α	А	OFF	С	1) Measure the picture period amplitudes of pins 13, 14, and 15.
T ₁₉	Cut-Off Voltage Control Range	А	A	А	OFF	А	A	А	OFF	С	1) When the R cutoff (subaddress (08)) data are changed to the maximum (FF), the center (80), and the minimum (00), measure the picture period amplitude of pin 13 and calculate the change in maximum and minimum from the center. (CUT+, CUT-) 2) Make the following changes in steps (1) and (2) above and measure: Change the subaddress (09) data and measure pin 14. Change the subaddress (0A) data and measure pin 15.

NOTE	ITEM			0)4/4	10DE 0 0	NID ADD			ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	Svv iv S ₀₅	10DE & S S ₀₆	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 54.
											2) When the G drive subaddress (06) data are changed to the maximum (FE), the center (80), and the minimum (00), measure the picture period amplitude of pin 14.
T ₂₀	Drive Adjustment Range	A	A	A	OFF	A	A	А	OFF	A	 Calculate the maximum and minimum amplitude ratios in relation to the drive center in decibels. (DRG+, DRG-)
											4) Repeat steps 1) to 3) above with the subaddress (07) data and pin 15 instead of 14. (DRB+, DRB-)
											1) Adjust the external power supply voltage until the ammeter reads 0.
-					055				055		 When the pin 11 voltage is increased by 0.2 V, measure the ammeter current. (i) Zin11 (Ω) = 0.2 (V) ÷ i (A)
T ₂₁	#11 Input Impedance	A	A	A	OFF	A	A	A	OFF	С	Microammeter V V
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 54.
											2) Measure the picture period amplitude of pin 13 (v _{ACL1}).
T ₂₂	ACL Characteristics	A	A	A	OFF	А	A	A	OFF	A	3) Apply -0.5 V DC to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (v _{ACL2})
	CL Characteristics	aracteristics A			. OFF	A	A	A	OFF		4) Apply -1 V DC to pin 11 from an external power supply and measure the picture period amplitude of pin 13. (v _{ACL3})
											5) ACL1 = -20 ×log (v _{ACL2} / v _{ACL1}) ACL2 = -20 ×log (v _{ACL3} / v _{ACL1})

NOTE	ITEM 4			014/14	10DE 0 0	UID ADD			ONDITION	NS V _{CC} :	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
						Ĭ	•				Measure the DC voltage of pin 11 (v _{ABL1}) Set the subaddress (04) data to (83).
											 3) Set the subaddress (04) data to (65). 3) Set the subaddress (00) data to (3F). Apply external voltage to pin 11, decrease the pin voltage from 6.5 V. When the voltage of pin 13 starts to change, measure the voltage of pin 11. (v_{ABL2})
T ₂₃	ABL Point	А	А	A	OFF	А	Α	A	OFF	С	4) Change the subaddress (00) data to (7F), (BF), and (FF), and repeat step 3) for each of these data. (VABL3, VABL4, VABL5)
											5) ABL _{P1} = V _{ABL2} - V _{ABL1} ABL _{P2} = V _{ABL3} - V _{ABL1} ABL _{P3} = V _{ABL4} - V _{ABL1} ABL _{P4} = V _{ABL5} - V _{ABL1}
											1) Apply 6.5 V from an external power supply to pin 11.
											2) Set the subaddress (00) data to (3F).
											3) Set the brightness to the maximum.
											4) Measure the voltage of pin 13 (v _{ABL6})
T ₂₄	ABL Gain	A	Α	Α	OFF	Α	Α	Α	OFF	С	5) Apply 5 V from the external power supply to pin 11.
124	ADE Guill		A		011	A	A				6) Change the subaddress (04) data to (80), (81), (82), and (83), and repeat step 4 for each of these data. (VABL7, VABL8, VABL9, VABL10)
											7) ABL _{G1} = V _{ABL7} - V _{ABL6} ABL _{G2} = V _{ABL8} - V _{ABL6} ABL _{G3} = V _{ABL9} - V _{ABL6} ABL _{G4} = V _{ABL10} - V _{ABL6}
T ₂₅	BLK Off Mode	Α	Α	А	OFF	Α	Α	Α	OFF	С	1) Set the subaddress (01) data to (40) and check that the blanking of pins 13, 14, and 15 is turned off.

									ONDITION	NS V _{CC} :	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM					SUB ADD					MEASUREMENT METHOD
T ₂₆	Analog RGB Gain	S ₀₃	S ₀₄	S ₀₅	S ₀₆	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	 Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V_{p-p}) to pin 3. Measure the picture period amplitude of pin 13 (v_{13R}). As in steps 1) and 2) above, input to pin 4 and measure pin 14 (v_{14G}), then input to pin 5 and measure pin 15 (v_{15B}). G_{TXR} = v_{13R} / 0.2 G_{TXG} = v_{14G} / 0.2 G_{TXB} = v_{15B} / 0.2
Т ₂₇	Analog RGB Frequency Characteristics	В	В	В	ON	А	А	A	OFF	С	1) Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 V _{p-p}) to pin 3. 2) Measure the picture period amplitude of pin 13. (v _{13R} 8 MHz) 3) As in steps 1) and 2)above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15. (v _{14G} 8 MHz, v _{15B} 8 MHz) 4) Calculate the frequency characteristics from the above results and the results obtained in T ₂₆ . Gf _{TXR} = 20 ׳og (v _{13R} 8 MHz / v _{13R}) Gf _{TXG} = 20 ׳og (v _{15B} 8 MHz / v _{15B}) Gf _{TXB} = 20 ׳og (v _{15B} 8 MHz / v _{15B})
T ₂₈	Analog RGB Input D Range	В	В	В	ON	А	A	А	OFF	С	 Set the subaddress (00: unicolor) data to min(00). Input signal 2 to pin 3 and gradually increase picture amplitude A. When the voltage during the picture period of pin 13 stops changing, measure picture amplitude A (DR13). Repeat steps (2) and (3) above under the following conditions: Input to pin 4, measure the voltage during the picture period of pin 14 (DR14). Input to pin 5, measure the voltage during the picture period of pin 15 (DR15).

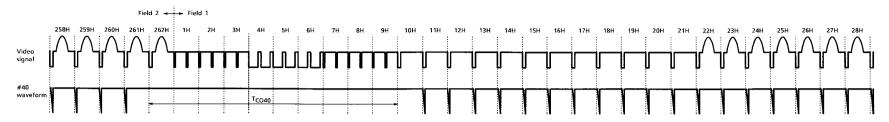

									OITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	0			ODE & S						MEASUREMENT METHOD
		S ₀₃	S ₀₄	S ₀₅	S ₀₆	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	
											1) Input signal 2 to pin 3. Gradually increase the picture period amplitude A.
T ₂₉	Analog RGB White Peak Slice Level	В	В	В	ON	Α	Α	Α	OFF	С	2) When pin 13 is clipped, measure the picture period amplitude of pin 13.
	Level										3) As in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15.
T ₃₀	Analog RGB Black Peak	A	А	Α	ON	А	Α	A	OFF	С	1) Apply an external power supply to pin 3. Gradually decrease the voltage from 5V DC. When pin 13 is clipped, measure the voltage of pin 13.
130	Limiter Level	٨	A	A	ON	A	A		Orr		2) As in step 1) above, apply to pin 4 and measure pin 14, then apply to pin 5 and measure pin 15.
											1) Input signal 1 (f = 100 kHz, picture period amplitude = $0.2 V_{p-p}$) to pin 3.
T ₃₁	Analog RGB Contrast	В	В	В	ON	A	A	A	OFF	С	2) When the subaddress (00, unicolor) data are changed to the maximum (3F), the center (20), and the minimum (00), measure the picture period amplitude of pin 13. (vuTXR1, vuTXR2, vuTXR3)
01	Adjustment Characteristics										3) Calculate the maximum and minimum amplitude ratios in decibels.
											4) As in steps 1), 2) and 3) above, input signal 1 to pin 4 and measure pin 14, then input signal 1 to pin 5 and measure pin 15.
											1) Input signal 2 to pins 3, 4, and 5.
_	Analog RGB Brightness				0.1				0==		2) Adjust the signal 2 amplitude A so that the picture period amplitude of pin 13 is $0.5~\rm V_{p-p}$.
T ₃₂	Adjustment Characteristics	В	В	В	ON	A	A	A	OFF	С	3) When the subaddress (05, RGB brightness) data are changed to the maximum (F8), the center (88), and the minimum (08), measure the picture period amplitudes of pins 13, 14, and 15. (vbr _{TX1} , vbr _{TX2} , vbr _{TX3})

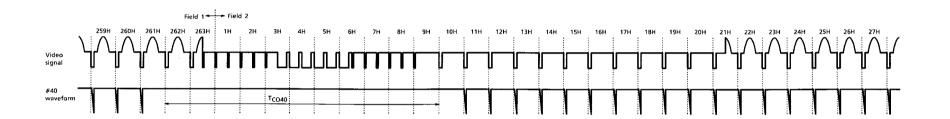
									ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	SUB ADD	RESS &	DATA S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
T ₃₃	Analog RGB Mode On Voltage	В	Α	A	OFF	A	A	A	OFF	C	 Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V_{p-p}) to pin 3. Apply an external power supply to pin 6. Gradually increase the voltage from 0 V. When signal 1 is output to pin 13, measure the voltage of pin 6.
T ₃₄	Analog RGB Mode Transfer Characteristics	A	Α	А	OFF	А	Α	Α	OFF	С	 Set the subaddress (05, RGB brightness) data to the maximum (F8). Input signal 3 (signal amplitude 4.5 V_{p-p}) to pin 6. Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2. Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edges of transfer delay time.
T ₃₅	Crosstalk from Video to Analog RGB	A	А	А	OFF or ON	А	А	Α	OFF	А	 Input signal 1 (f = 4 MHz, picture period amplitude = 0.5 V_{p-p}) to pin 54. Adjust the input amplitude so that the picture period amplitude of pin 13 is 2 V_{p-p}. Turn SW₆ on. Measure the picture period amplitude (V_{p-p}) of pin 13. (v_{13A}) Calculate by the following formula the amount of crosstalk from the video to the analog RGB. Vv → AR = -20 ×log (v_{13A} / 2) Repeat steps4) and 5) above on pins 14 and 15.

							(TEST CO	ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	SUB ADD	RESS &	DATA S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
		-03	- 04	-03	-00	-07	-08	- 09	- 10	- 34	1) Turn SW ₆ on.
											2) Input signal 1 (f = 4MHz, picture period amplitude = 0.5 V _{p-p}) to pin 3.
											3) Adjust the input amplitude so that the picture period amplitude of pin 13 is $2 V_{p-p}$.
-	Crosstalk from Analog		-		ON				055		4) Turn SW ₆ off.
T ₃₆	RGB to Video	В	В	В	Or	Α	Α	Α	OFF	С	5) Measure the picture period amplitude (V _{p-p}) of pin 13. (v _{13B})
					OFF						6) Calculate by the following formula the amount of crosstalk from the analog RGB to the video. vA → AR = −20 ×ℓog (v _{13B} / 2)
											7) As in steps 2) to 6) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15.
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 7.
											2) Measure the picture period amplitude of pin 13. (v _{13R})
T ₃₇	Analog OSD Gain	А	A	A	OFF	В	В	В	ON	С	3) As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (v _{14G} , v _{15B}) GOSDR = v _{13R} / 0.2 GOSDG = v _{14G} / 0.2 GOSDB = v _{15B} / 0.2
											1) Input signal 1 (f = 8 MHz, picture period amplitude = 0.2 V _{p-p}) to pin 7.
											2) Measure the picture period amplitude of pin 13. (v _{13R} 8MHz)
_	Analog OSD Frequency				0==						3) As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and pin 15. (v _{14G} 8 MHz, v _{15B} 8 MHz)
T ₃₈	Characteristics	A	A	Α	OFF	В	В	В	ON	С	4) Calculate the frequency characteristics from the above results and the results in T ₃₇ .
											5) Gf _{OSDR} = 20 ׳og (v _{13R} 8 MHz / v _{13R}) Gf _{OSDG} = 20 ׳og (v _{14G} 8 MHz / v _{14G}) Gf _{OSDB} = 20 ׳og (v _{15B} 8 MHz / v _{15B})

									ONDITION	NS V _{CC}	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	ODE & S	SUB ADD	RESS &	DATA S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
T ₃₉	Analog OSD Output Level	A A	A	A	OFF	A	А	A	OFF	C	1) When 0V (DC) is input from an external power supply to pin 7, when 7.5 V is input to pin 7, and when no external voltage is applied to pin 7, measure the picture period amplitude of pin 13. (VosD1R, VosD2R, VosD3R) 2) As in step 1) shows input to pin 8 and measure pin 14, then input to pin 9.
											As in step 1) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (VOSD1G, VOSD2G, VOSD3G) (VOSD1B, VOSD2B, VOSD3B)
											1) Input signal 1 (f = 100 kHz, picture period amplitude = 0.2 V _{p-p}) to pin 7.
T ₄₀	Analog OSD Mode On Voltage	Α	Α	Α	OFF	В	Α	Α	OFF	С	2) Apply an external power supply to pin 10. Gradually increase the voltage from 0 V.
											3) When signal 1 is output to pin 13, measure the pin 10 voltage.
											1) Apply 2.5 V from an external power supply to pins 7, 8, and 9.
											2) Input signal 4 (signal amplitude = 4.5 V _{p-p}) to pin 10.
T ₄₁	Analog OSD Mode Transfer Characteristics	Α	Α	Α	OFF	Α	Α	Α	OFF	С	Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2.
											Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edge of the transfer delay time.
											Set the bus control data to read mode and reset.
											2) Set to read mode again.
	RGB Output										3) Check that the read mode parameter (RGB-OUT) is 0 (error).
T ₄₂	Self-Diagnosis	Α	Α	Α	OFF	Α	Α	А	OFF	Α	4) Measure the voltage of pin 54 and apply that voltage +0.7 V to pin 53 using an external power supply.
											5) Set to read mode again.
											6) Check that the read mode parameter (RGB-OUT) is 1 (OK).

									OITION	NS V _{CC} :	= 5 V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	S ₀₃	S ₀₄	SW M	IODE & S	SUB ADD S ₀₇	RESS &	DATA S ₀₉	S ₁₀	S ₅₄	MEASUREMENT METHOD
		003	004	005	006	307	008	009	010	054	1) Set pin 17 to open, connect a 1-k Ω resistor to the pin, and apply 3V to the pin from the power supply.
T ₄₄	ACB Clamp Current	А	А	А	OFF	А	Α	А	OFF	С	2) When the subaddress (11) data are set to (10), (30), (50), and (70), measure from the waveform of pin 17 the current flowing to GND during the clamp period. (I17a, I17b, I17c, I17d)
											3) Repeat the measurements in steps 1) and 2) above on pins 18 and 19. (I18a, I18b, I18c, I18d) (I19a, I19b, I19c, I19d)
											Input a ramp waveform to pin 54 (Y IN) and adjust the input amplitude so that the picture period amplitude of pin 13 is 2.5 V _{p-p} .
											Adjust the drive adjustment data so that the picture period amplitudes of pins 14 and 15 are equal to that of pin 13.
											3) Set the subaddress (13) data to (81).
											4) Using pins 13, 14, and 15, calculate the RGBγ start point and its gradient (in decibels) in relation to the off point, using Fig.1 below.
											Output amplitude (IRE)
T ₄₆	RGB γ Correction Characteristics	A	A	А	OFF	A	A	А	OFF	А	Δ3 100 γ2 γ1 Δ2 Δ1 Δ1 Input amplitude (IRE)

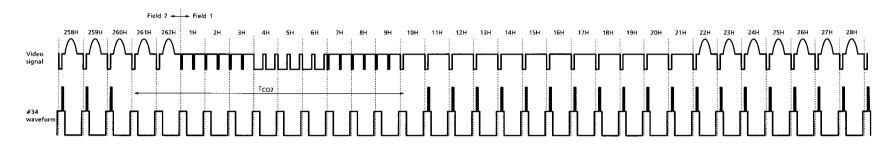


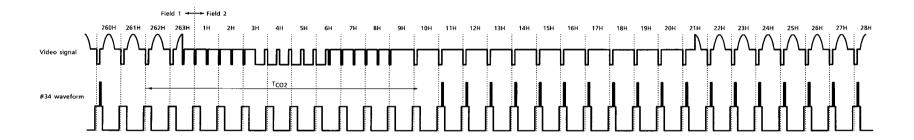

								(TES	T COND	ITIONS \	/cc = 5	V and 9 V, Ta = 25 ± 3°C)
NOTE	ITEM	SYMBOL				ODE & S	SUB ADD	RESS &				MEASUREMENT METHOD
			S ₀₃	S ₀₄	S ₀₅	S ₀₆	S ₀₇	S ₀₈	S ₀₉	S ₁₀	S ₅₄	WIEAGGIVEINENT WETTIOD
						S52	S53	1				1) Change subaddress (05) H to (81) H.
												2) Set unicolor = max; bright = max; color = center.
												3) Input signal 1 ($f_0 = 100 \text{ kHz}$, 100 mV _{p-p}) to pin 53.
	Base Band Tint	ANG RMIN										4) To pin 52, input a signal with the same amplitude but 90°C phase advanced compared to the signal input to pin 53.
T ₅₁	Adjustment Characteristics	ANG BMIN ANG RMAX	A	А	Α	OFF	ON	ON	_	OFF	С	5) When subaddress (14) H is changed to (C0) H \rightarrow (80) H, measure the amount of change in the output phase of pin 13. (ANG RMIN)
	Characteristics	ANG BMAX										6) Under the same conditions as 5) above, measure the amount of change in the output phase of pin 15. (ANG BMIN)
												7) When subaddress (14) H is changed to (C0) H → (FF), measure the amount of change in the output phase of pin 13. (ANG RMAX)
												8) Under the same conditions as 7) above, measure the amount of change in the output phase of pin 15. (ANG BMAX)
												1) Change subaddress (05) H to (81) H.
												2) Set unicolor = max; bright = max; color = center. Relative amplitude, phase switching: Change subaddress (12) H to (00).
l _	Base Band Tint											3) Input signal 1 ($f_0 = 100 \text{ kHz}$, 100 mV _{p-p}) to pin 53.
T ₅₂	Adjustment Position	BUS B0	A	Α	А	OFF	ON	ON	_	OFF	С	4) To pin 52, input a signal with the same amplitude but 90°C phase advanced compared to the signal input to pin 53.
												5) Changing subaddress (14) H from (C0) H, read the transmission data at subaddress (14) H when the output phase of the pin 15 signal is the same as the input phase of the pin 53 signal. (BUS B0)

Deflection stage

				TEST C	ONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW N	MODE SW ₃₈		MEASUREMENT METHOD
D ₁	Sync separation Input Sensitivity Current	OFF	В	(Sync in) (38) (A) (D) (V) (M)	When the number of H periods in the #33 (VD out) waveform changes from 297 to 225, increase the voltage from 3 V and measure the value at (A) in the diagram.
D ₂	V separation Filter Pin Source Current	OFF	В	(V Sepa) #39 (3) A +	When the subaddress (0D) D ₁ is set to (1), measure the value at in the diagram.
D ₃	V Separation Level	OFF	В	(Sync in) #38 (V Sepa) #37 (OEF VCC)	When #38 (Sync in) is connected to GND, measure the #39 (VSEP FILTER) voltage.
D ₄	H AFC Phase Detection Current H AFC Phase Detection Current Ratio	OFF	А	(AFC1 FILTER) #40 40 V (around 7.5 V)	Set the voltage to around 7.5 V, equivalent to when #40 (AFC1 FILTER) has no load. When a signal as shown in the diagram below is input to #38 (Sync in) from TG7, calculate V_1 and V_2 using the #40 waveform. $I_{DET} = V_1 \div 1 \text{ k}\Omega \left(\mu A\right) \\ \Delta I_{DET} = \left(V_1 \ / \ V_2 - 1\right) \times 100 \text{ (\%)}$
D ₅	Phase Detection Stop Period	OFF	A	Input a composite video	signal to #38 and measure the V mask period of the #40 (AFC1 FILTER) waveform.

Note D5: Phase detection stop period

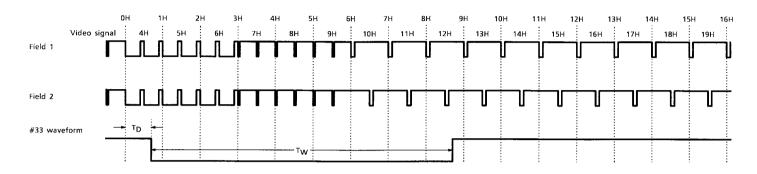

		TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)		TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW M		MEASUREMENT METHOD
D ₆	32*f _H VCO Oscillation Start Voltage	OFF	В	Increase the voltage from 2.5 V. When an oscillation waveform appears on TP41, measure the voltage. At the same time, check that no waveform is output (0V DC) to #35 (H out). (Apply only DEF V _{CC} .) (32 f _h VCO) (32 f _h VCO) (4) Probe observation
D ₇	Horizontal Output Start Voltage	OFF	В	Increase the voltage. When a horizontal pulse appears on #35 (H out), measure the voltage. Note that the horizontal oscillation frequency at this time is near f _{HO} (15.7 kHz ± 1 kHz). (Apply only DEF V _{CC} .) 1) Under the above conditions, when no horizontal pulse is output on #35, read D ₄ in bus read mode. (Apply also the chroma V _{CC} .) (V _{BUS HOFF}) 2) Under the above conditions, when a horizontal pulse is output on #35, read D ₄ in bus read mode. (Apply also the chroma V _{CC} .) (V _{BUS HON})
D ₈	Horizontal Output Pulse Duty	OFF	В	Observe the #35 (H out) waveform and measure t1 and t2. $T_{H35} = \frac{t1}{t1+t2} \times 100(\%)$
D ₉	Phase Detection Stop Mode	OFF	В	Input a composite video signal to TP38. When the subaddress (0D) D ₁ is set to (1), measure the oscillation frequency of the #35 (H out) waveform.
D ₁₀	Horizontal Free-Run Frequency	OFF	В	Measure the oscillation frequency of #35 (H out).
D ₁₁	Horizontal Oscillation Frequency Range	OFF	В	 When #40 (AFC1 FILTER) is connected to DEF V_{CC} via a 10-kΩ resistor, measure the #35 (H out) oscillation frequency. (V_{HMIN}) When #40 (AFC1 FILTER) is connected to GND via a 68-kΩ resistor, measure the #35 (H out) oscillation frequency. (V_{HMAX})
D ₁₂	Horizontal Oscillation Control Sensitivity	OFF	В	When the voltage on #40 (AFC1 FILTER) is varied by ±0.05 V with a horizontal oscillation frequency of 15.734 kHz, calculate the #35 (H out) frequency variation rate.

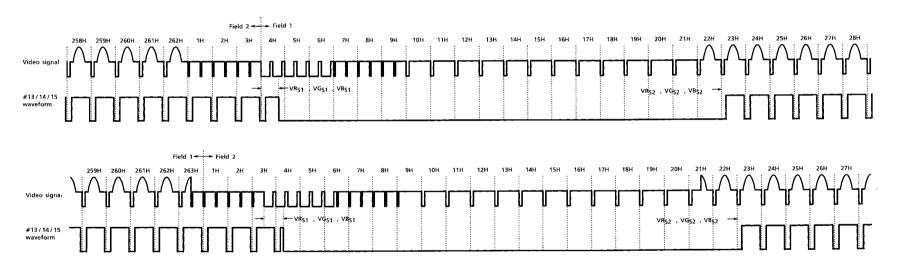

		TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)		TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW M SW ₃₄	MODE SW ₃₈	MEASUREMENT METHOD
D ₁₃	Horizontal Output Voltage	OFF	В	 Measure the high-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (V_{H35}) Measure the low-level voltage of #35 (H out) (when #35 is connected to GND via a 481-Ω resistor). (V_{L35})
D ₁₄	Supply Voltage Dependence of Horizontal Oscillation Frequency	OFF	В	When the #37 (DEF V _{CC}) voltage is varied from 8.5 V, to 9.5 V, measure the variation in the #35 (H out) oscillation frequency.
D ₁₅	Temperature Dependence of Horizontal Oscillation Frequency	OFF	В	When the temperature is varied through the range −20°C to +60°C, measure the variation in the #35 (H out) oscillation frequency.
D ₁₆	Horizontal Sync Phase	OFF	А	#38 input signal (Sync in) When a signal as shown at left is input to TP38 from TG7, measure the phase difference of the #34 (FBP in) waveform in relation to the #40 (AFC1 FILTER) waveform (S _{PH1}). Also measure the phase difference of the #40 waveform in relation to the center of the input horizontal sync signal (S _{PH2}).
D ₁₇	Horizontal Picture Phase Adjustment Range	OFF	Α	#34 input signal (FBP in) Waveform Under the above conditions, when the subaddress (0B) D ₇ to D ₃ are varied from (00000) to (11111), measure the phase variation in the #34 (FBP in) waveform. #34 input signal (FBP in)

				TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW M SW ₃₄	1ODE SW ₃₈	MEASUREMENT METHOD
D ₁₈	Horizontal Blanking Pulse Threshold	ON ON	A	Decrease the amplitude of #34 (FBP in) from 9 V _{p-p} . When AFC2 stops locking, measure the amplitude.(V _{HBLK1}) Increase the amplitude of #34 (FBP in) from 0 V _{p-p} . When horizontal blanking is applied to #13 (R in), measure the amplitude. (V _{HBLK2})
D ₁₉	Curve Correction Range	OFF	Α	Input a signal as shown below to TP38 from TG7. When the voltage is varied from 3 V to 6 V, measure the phase variation in the #34 (FBP in) waveform. #40 waveform (APC1 FILTER) #42 = 6 V #42 = 3 V #42 = 3 V
D ₂₀	H Cycle Black Peak Detection Disable Pulse	OFF	Α	#38 input signal (Sync in) Set the subaddress (01) D ₇ to (0), set the subaddress (05) D ₃ ~D ₁ to (010), and set the subaddress (0C) D ₀ to (1). When a signal as shown at left is input to TP38 from TG7, measure the #32 (HD out) waveform phase difference HBP _S and pulse width HBP _W in relation to the #40 (AFC1 FILTER) waveform. #40 waveform (AFC1 FILTER) #32 input signal (HD out)
D ₂₁	Threshold of External Black Peak Detection Disable Pulse	OFF	Α	Set the subaddress (02) D ₇ to (1). Increase the voltage from 0 V. When #52 reaches 3.4 V DC, measure the voltage.

				TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE M		MEASUREMENT METHOD
		344	34438	(R in) #13 Set the subaddress (01) D_7 to (0), set the subaddress (05) $D_3 \sim D_1$ to (010), and set the subaddress (0C) D_0 to (1).
D ₂₂		OFF	А	#38 input signal (Sync in) Input a signal as shown at left to TP38 from TG7, then measure the #32 (HD out) waveform phase difference CP _S and pulse width CP _W in relation to the #40 (AFC1 FILTER) waveform.
	Clamp Pulse Width			(AFC1 FILTER) CPS CPW 5.0 V #32 waveform (HD out)
	HD Output Start Phase			#38 input signal (Sync in) 63.5 μs Input a signal as shown at left to TP38 from TG7, then measure the #32 (HD out) waveform phase difference HD _S and pulse width HD _W and V _{HD} in relation to the #40 (AFC1 FILTER) waveform.
D ₂₃	HD Output Pulse Width HD Output Amplitude	OFF	Α	#32 waveform (HD out)
	Gate Pulse Start Phase			#38 input signal (Sync in) Hat waveform (AFC1 FILTER) Filter Filter
D ₂₄	Gate Pulse Width	OFF	Α	#34 output waveform (FBP in)

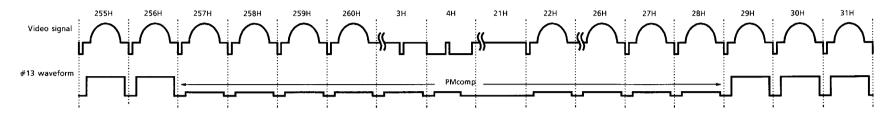
Note D24: Gate pulse V mask period



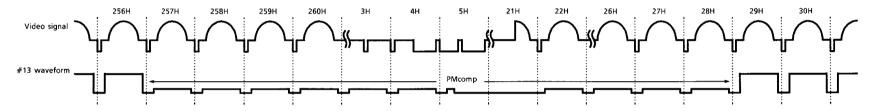

				TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)	
NOTE	ITEM	SW MODE SW ₃₄ SW ₃₈		MEASUREMENT METHOD	
D ₂₅	Gate Pulse V Mask Period	OFF	A	Input a composite video signal to TP38, observe the #34 (FBP in) waveform, and measure the V mask period.	
D ₂₆	Sync Out Low Level	OFF	А	#36 waveform (Sync out) Input a composition video signal to TP38, observe the #36 (Sync out) waveform, and measure the low level of the sync period.	
D ₂₇	Vertical Oscillation Start Voltage	OFF	В	Increase the voltage from 0 V. When a pulse is output from #33 (VD out), measure the voltage. (Apply only DEF V _{CC} .)	
D ₂₈	Vertical Free-Run Frequency	OFF	В	Measure the frequency of #33 (VD out).	
D ₂₉	Vertical Output Voltage	OFF	В	 Measure the high level voltage of the #33 (VD out) waveform. (V_{VH}) Measure the low level voltage of the #33 (VD out) waveform. (V_{VL}) 	
D ₃₀	Service Mode Switching	OFF	В	When the subaddress (0C) D ₀ is set to (1), check that the #27 (V.Ramp) waveform is low (3.4 V DC).	
D ₃₁	Vertical Pull-In Range	OFF	С	Input a composite video signal to TP38, vary the vertical frequency of this signal in 0.5-H steps, and measure the vertical pull-in range.	
D ₃₂	Vertical Frequency Forced 263H Vertical Frequency Forced 262.5H	OFF	В	 Measure the number of H periods of #33 (HD out) when the subaddress (0D) D₁ and D₀ are set to (10). (f_{V1}) Measure the number of H periods of #33 (HD out) when the subaddress (0D) D₁ and D₀ are set to (11). (f_{V2}) 	
D ₃₃	Vertical Blanking Off Mode	OFF	В	Set the subaddress (01) D ₇ to (1) and check that no vertical or horizontal blanking pulse is applied to #13 (R out), #14 (G out), or #15 (B out).	

		TEST CONDITIONS (DEF $V_{CC} = 9 \text{ V}$, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)					
NOTE	ITEM	SW MODE		MEASUREMENT METHOD			
		SW ₃₄	SW ₃₈				
D ₃₄	Vertical Output Pulse	OFF	С	Input a composite video signal to TP38, then measure the #33 (VD out) vertical pulse delay T _D and pulse width T _W in relation to the vertical			
01	Width			sync signal of #38 (Sync in).			
	RGB Output						
	Vertical Blanking Pulse			Input a composite video signal to TP38, then measure the #13 (R out) waveform phase difference VR _{S1} and pulse width VR _{S2} in relation to			
D ₃₅	Start Phase	OFF	С	the #38 (Sync in) waveform.			
D35	RGB Output	OFF		Repeat measurement on #14 and #15.			
	Vertical Blanking Pulse			Set the subaddress (11) $D_4 \sim D_1$ to (1111) and the subaddress (12) $D_4 \sim D_1$ to (1111).			
	Stop Phase						
	V Cycle Black Peak						
D ₃₆	Detection Disable Pulse	OFF	С	Input a composite video signal to TP38 and measure the V cycle black peak detection disable pulse period of #55 (BLACK PEAK DET).			
	(Normal)						
	V Cycle Black Peak						
D ₃₇	Detection Disable Pulse	OFF	С	Under the conditions in D ₃₈ above, set the subaddress (0C) D ₁ to (1) and measure the V cycle black peak detection disable period of #55.			
	(Zoom)						

Note D34: Vertical output pulse width, vertical output pulse phase variation, and vertical output pulse phase range

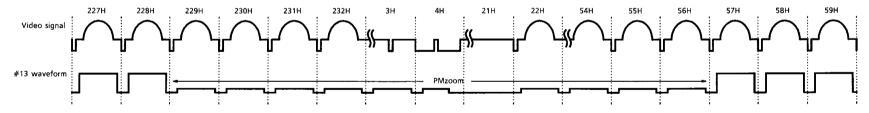


Note D35: RGB output vertical blanking pulse start and stop phases

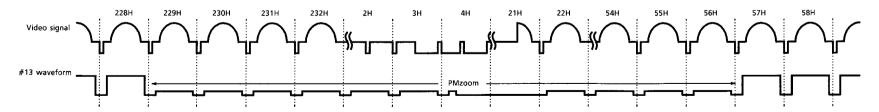


Note D36: Video mute period (normal)

Field 2 to field 1

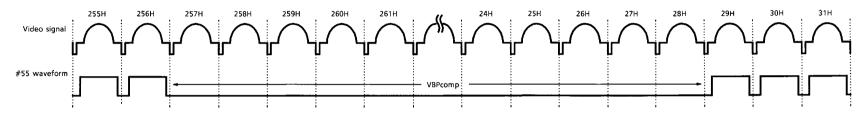


Field 1 to field 2

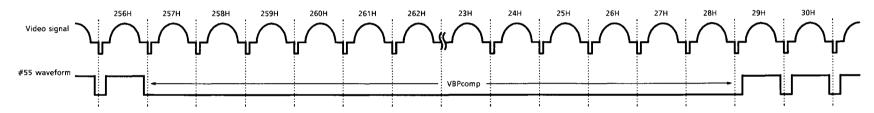


Note 3D37: Video mute period (zoom)

Field 2 to field 1

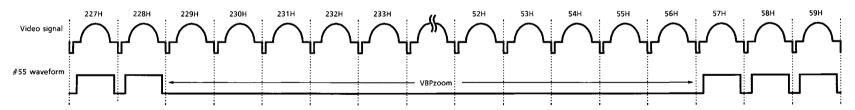


Field 1 to field 2

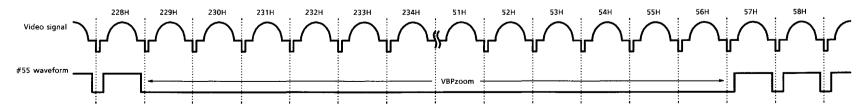


Note D38: V cycle black peak detection disable pulse (normal)

Field 2 to field 1



Field 1 to field 2



Note D39: V cycle black peak detection disable pulse (zoom)

Field 2 to field 1

Field 1 to field 2

Deflection correction stage

			TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POW	ER-ON RESET)
NOTE	ITEM	SW MODE	MEASUREMENT METHOD	,
		SW ₂₈	WILAGOREWIEW WIETHOD	
G ₁	Vertical Ramp Amplitude	А	Measure the amplitude of the vertical ramp wave on #27	VP27 #27 waveform
G ₂	Vertical Amplification	Α	Set #24 and #25 to open. Set the subaddress (0C) data to (81).	V _{H24}
G ₃	Vertical Amp Maximum Output Voltage	А	Connect #25 to an external power supply. When the voltage is varied from 5.5 V to 6.5 V, measure the vertical amplification on the #24 voltage.	#24 DC
G ₄	Vertical Amp Minimum Output Voltage	Α	(G _V) (V _{H24}) (V _{L24})	#25 DC
G ₅	Vertical Amp Maximum Output Current	Α	Set #24 and #25 to open. Apply 7 V to #25 from an external source. Insert an ammeter between #24 and GND, and measure the current	25
G ₆	Vertical NF Sawtooth Wave Amplitude	А	Measure the amplitude of the #25 waveform (vertical sawtooth waveform).	V _{P25} #25 waveform
G ₇	Vertical Amplitude Range	А	When the subaddress (0C) data are set to (00) and (FC), measure the amplitudes of the #25 $V_{P25~(00)} \text{ and } V_{P25~(FC)}.$ $V_{PH} = \pm \frac{V_{P25~(FC)} - V_{P25~(00)}}{V_{P25~(FC)} + V_{P25~(00)}} \times 100(\%)$	waveform (vertical sawtooth waveform)

			TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POW	ER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD	
G ₈	Vertical Linearity Correction Maximum Value	А	Set the subaddress (0E) data to (F8). Change the subaddress (10) $D_7 \sim D_4$ so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). When the subaddress (0F) data are (80), measure the #25 waveform V_1 (80) and V_2 (80). Likewise, when the subaddress (0F) data are (00) and (F0), measure V_1 (00), V_2 (00), V_1 (F0), and (F0). $V_1 = \pm \frac{V_1(00) - V_1(F0) + V_2(F0) - V_2(00)}{2 \times (V_1(80) + V_2(80))}$	#22 #25
G ₉	Vertical S Correction Maximum Value	А	Set the subaddress (0E) data to (F8). Change the subaddress (10) $D_7 \sim D_4$ so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). When the subaddress (0E) data are (80), measure the amplitude of the #25 waveform V_{S25} (80). Likewise, when the subaddress (0E) data are (87), measure the amplitude of the #25 waveform V_{S25} (87). $V_S = \pm \frac{V_{S25}(80) - V_{S25}(87)}{V_{S25}(80)} \times 100 (\%)$	V _{S25} (80)


			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD
G ₁₀	Vertical NF Center	A	Set the subaddress data (0E) to (F8). Change the subaddress (10) D ₇ ~D ₄ so that the #22 parabola waveform is symmetrical. Set the subaddress data (0E) to (00). Measure the center voltage V _C of the #25 waveform.
	Voltage		V _C
G ₁₁	Vertical NF DC Change	А	Under the conditions in G_{10} above, set the subaddress (13) data to (80) and measure the vertical NF center voltage $V_{C\ (80)}$. Next, set the subaddress (13) data to (00) and measure the vertical NF center voltage $V_{C\ (00)}$. V_{DC} = $\pm V_{C\ (00)}$ – $V_{C\ (80)}$ (V)
G ₁₂	Vertical Amplitude EHT Correction	А	Set the subaddress (0E) data to (F8). Change the subaddress (10) $D_7 \sim D_4$ so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). Connect #28 to GND and measure the amplitude of the #25 waveform V_{EHT} (0V). Connect #28 to a 5-V power supply and measure the amplitude of the #25 waveform V_{EHT} (5 V). $V_{EHT} = \frac{V_{EHT}(5V) - V_{EHT}(0V)}{V_{EHT}(5V)} \times 100(\%)$

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD
G ₁₃	E-W NF Maximum DC Value (Picture Width)		Set the subaddress (0E) data to (F8). Change the subaddress (10) D ₇ ~D ₄ so that the #22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). Set the subaddress (0D) data to (00) and measure the #22 voltage V _{L22} . Set the subaddress (0D) data to (FC) and measure the #22 voltage V _{H22} .
G ₁₄	E-W NF Minimum DC Value (Picture Width)	A	V _{H22} V _{L22} #22 waveform
G ₁₅	E-W NF Parabola Maximum Value (Parabola)	A	Set the subaddress (0D) data to (00) and the subaddress (0E) data to (F8). Measure the amplitude of the #22 waveform (parabola waveform) V _{PB} . V _{PB} #22 waveform

			TEST CONDITIONS (DEF V_{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)
NOTE	ITEM	SW MODE	MEASUREMENT METHOD
G ₁₆	E-W NF Corner Correction (Corner)	SW ₂₈	Set the subaddress (0E) data to (F8). Change the subaddress (10) $D_7 \sim D_4$ so that the #22 parabola waveform is symmetrical. Set the subaddress (10) $D_3 \sim D_0$ to (0) and measure the amplitude of the #22 waveform $V_{CR(0)}$. Likewise, when the subaddress (10) data are set to (F), measure the #22 waveform amplitude $V_{CR(F)}$. $V_{CR(F)} \sim V_{CR(F)} - V_{CR(0)}$
G ₁₇	Parabola Symmetry Correction	Α	Set the subaddress (10) data to (00) and measure the vertical NF center voltage of the #25 waveform $V_{C (00)}$. Likewise, when the subaddress (10) data are set to (FC), measure the #25 voltage $V_{C (FC)}$. $V_{TR} = \pm \frac{V_{C (00)} - V_{C (FC)}}{2 \times V_{P25}} \times 100 (\%)$

		TEST CONDITIONS (DEF V _{CC} = 9 V, Ta = 25 ± 3°C, BUS DATA = POWER-ON RESET)				
NOTE	ITEM	SW MODE SW ₂₈	MEASUREMENT METHOD			
G ₁₈	E-W Amp Maximum Output Current	А	Connect an ammeter between #23 and GND. Measure the current.			
G ₁₉	AGC Operating Current 1	A	Measure the TP26 waveform peak value. (V_{AGC0}) Set the subaddress (06) D_0 to (1) and repeat the measurement. (V_{AGC1})			
G ₂₀	AGC Operating Current 2	A	(IAGC1) VX (TP26 waveform)			
G ₂₁	Vertical Guard Voltage	Α	Set #25 to open. Connect an external power supply to #25. Decrease the voltage from 5 V. When full blanking is applied to #13, measure the voltage.			
G ₂₂	E / W Output Self- Diagnosis	А	Connect a 5-V external power supply to #23. Read D_2 in bus read mode. ($V_{BUS} EW_{OFF}$) When the external power supply connected to #23 is disconnected, read D_2 in bus read mode. Ensure that an E / W waveform is output from #22. ($V_{BUS} EW_{ON}$)			
G ₂₃	V-Out Output Self- Diagnosis	А	Connect a 9-V external power supply to #24. Read D_3 in bus read mode. ($V_{BUS} V_{OFF}$) When the external power supply connected to #24 is disconnected, read D_3 in bus read mode. Ensure that a V-out waveform is output from #25. ($V_{BUS} V_{ON}$)			
G ₂₄	Vertical Blanking Check	А	 Set the subaddress (0C) data to (81). When the subaddress (11) D₄~D₀ are changed from 0000 to 1111, check that the #13 blanking stop phase begins. (V_{BLK1}) When the subaddress (12) D₄~D₀ are changed from 0000 to 1111, check that the #13 blanking start phase begins. (V_{BLK2}) 			
G ₂₅	V Centering DAC Output	А	 Set the subaddress (13) data to (00) and measure the #21 voltage V_{21L}. Set the subaddress (13) data to (80) and measure the #21 voltage V_{21M}. Set the subaddress (13) data to (FE) and measure the #21 voltage V_{21H}. 			
G ₂₆	V NFB Pin Input Current	А	Connect a 9-V V_{CC} via a 100-k Ω resistor to #25. Measure the sink current on #25 according to the voltage difference of the 100-k Ω resistance. I ₂₅ = V / 100 k Ω			

1) Input signal C-1

2) Input signal C-2

3) Input signal C-3

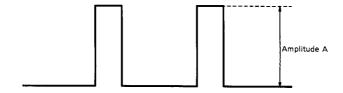
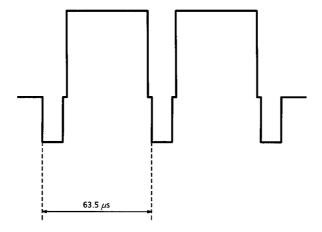
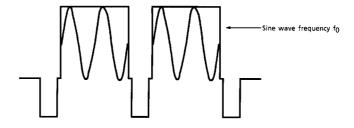




Fig.C Test signals for TA1310N chroma, color difference, and Y stage

1) Video signal

2) Video signal 1

3) Video signal 2

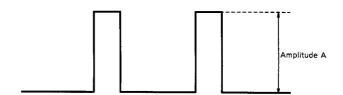


Fig.T-1 Test signals for TA1310N text stage

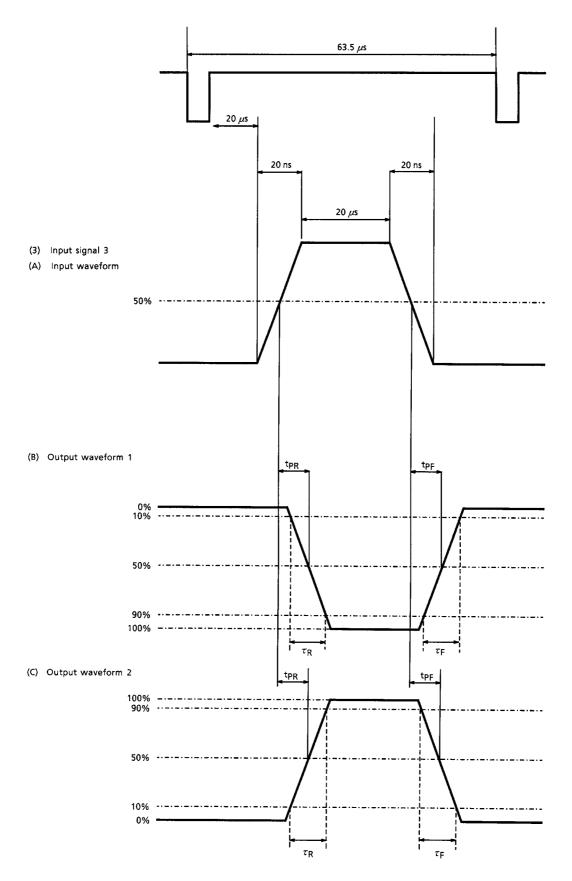
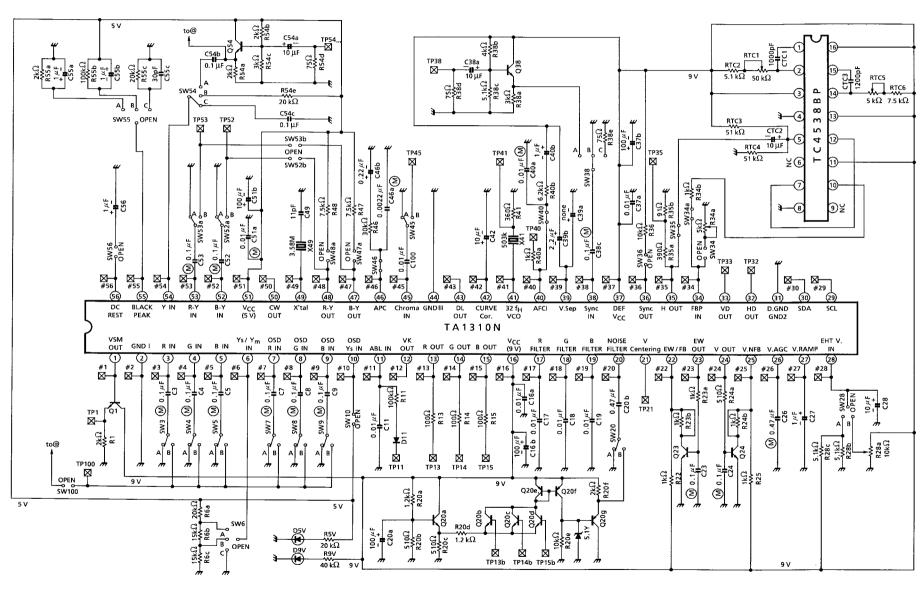
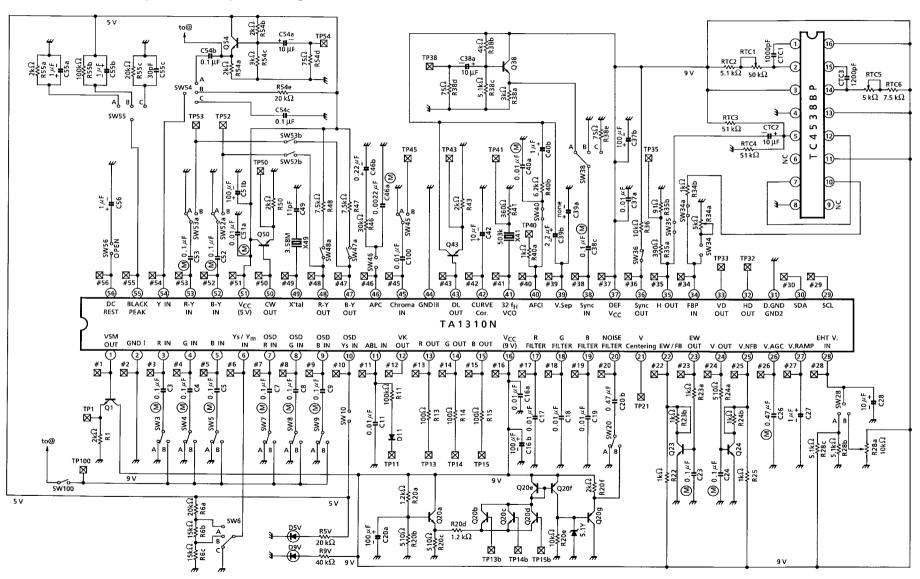
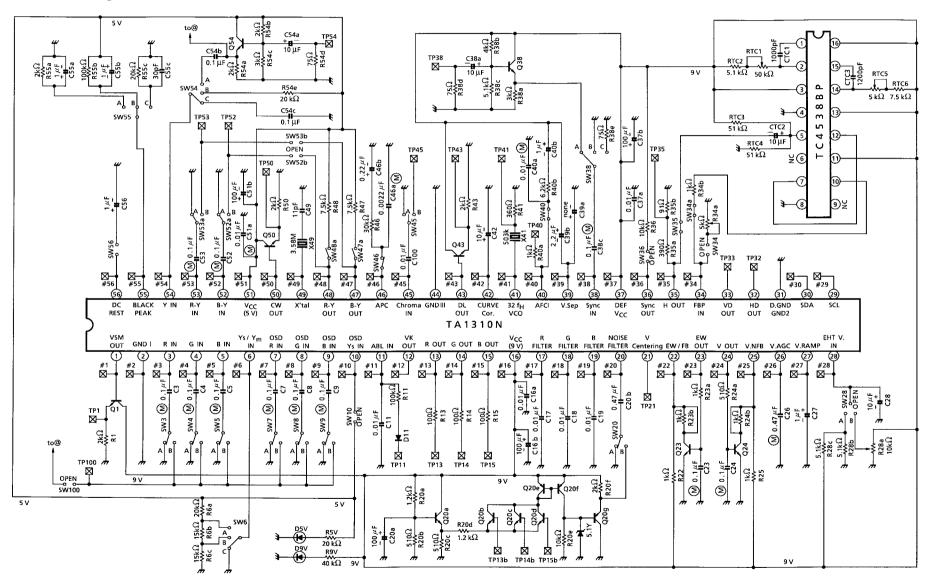
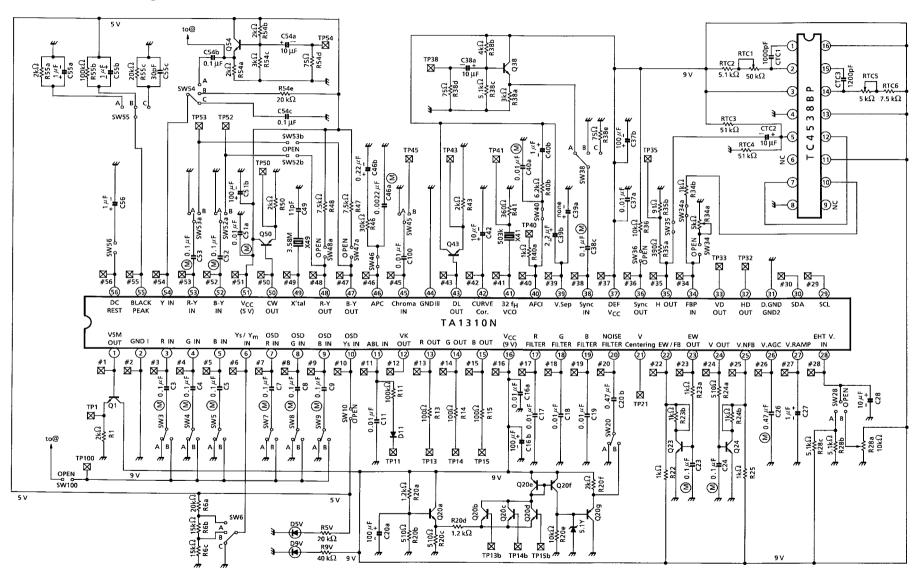
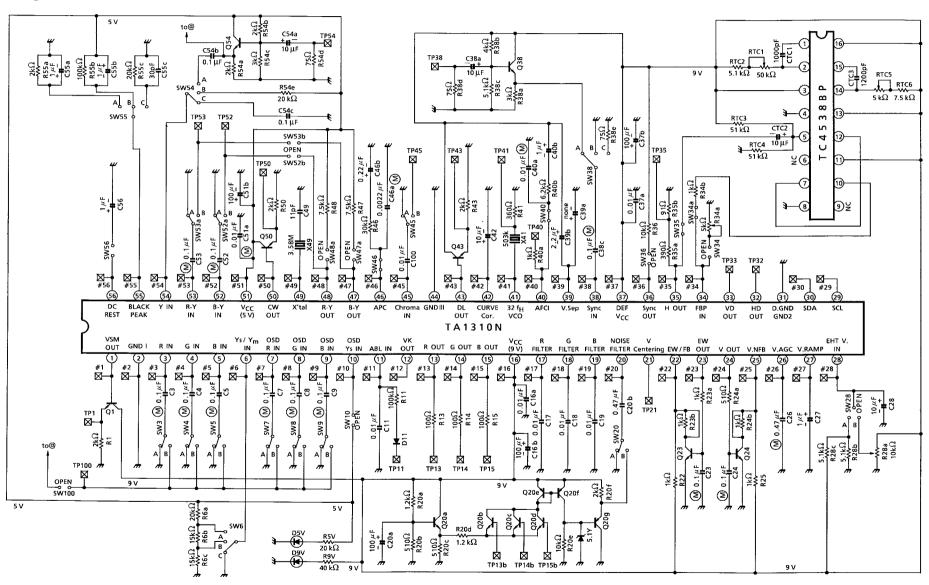
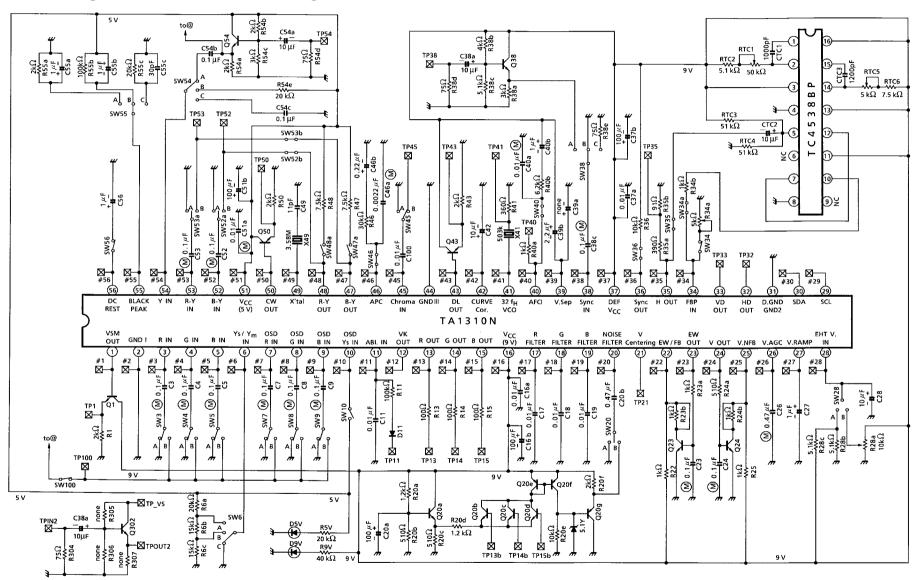




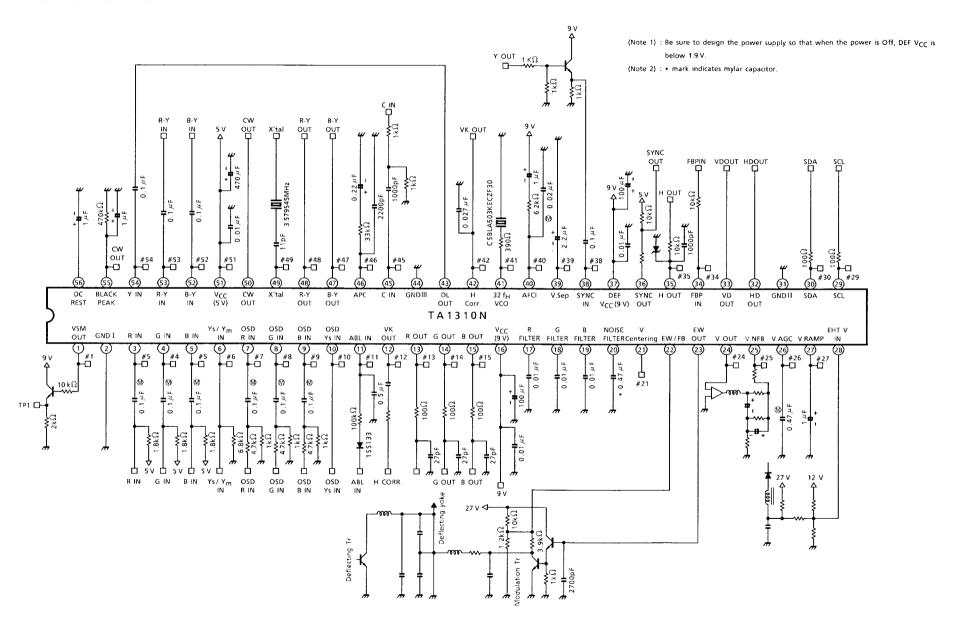
Fig.T-2 Test pulses for TA1310BN text stage


DC

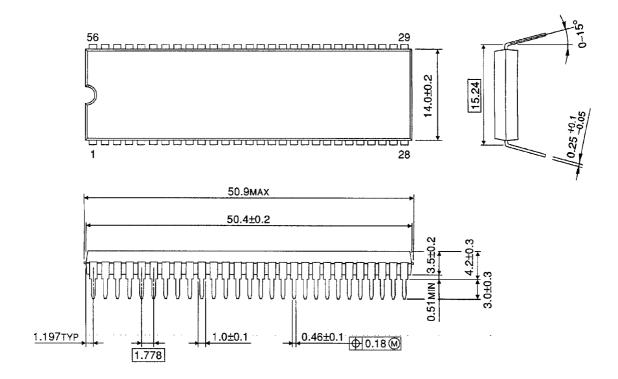

AC characteristics for picture sharpness stage


Chroma stage


Color difference stage


Y stage

Deflection stage and deflection correction stage



APPLICATION CIRCUIT

PACKAGE DEMENSIONS

SDIP56-P-600-1.78 Unit: mm

Weight: 5.55g (Typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.