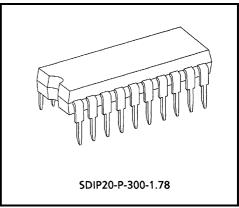




TENTATIVE

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


# TA1226N

### Y LUMINANCE TRANSIENT IMPROVER IC

TA1226N integrates Y luminance transient improver circuits (black stretch, DC transfer ratio compensation, super real transient, noise reduction) in a 20-pin shrink DIP. TA1226N functions are controlled via I<sup>2</sup>C bus.

#### **FEATURES**

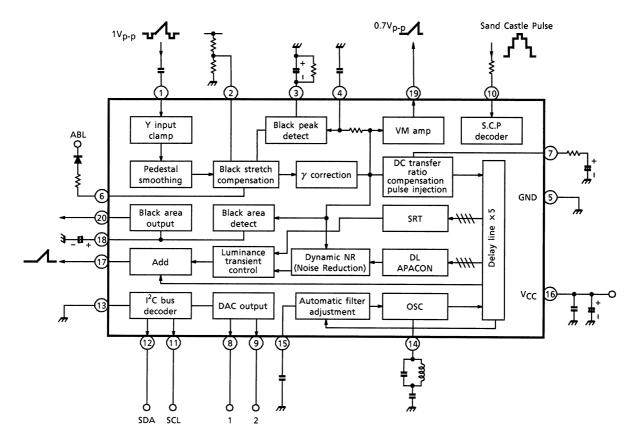
- Black stretch circuit
- DC transfer ratio compensation circuit
- Super real transient circuit (SRT)
- Noise reduction
- 1-bit DAC output
- Velocity modulation output



Weight: 1.02g (Typ.)

000707EBA1

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.


damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.. The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

The information contained herein is subject to change without notice.

### **BLOCK DIAGRAM**



#### **TERMINAL CONNECTION DIAGRAM**

| 20                      | (19)                      | (18)                  | (17)                     | (16)          | (15)                             | (14)                           | (13)           | (12)           | (1)          |  |  |  |
|-------------------------|---------------------------|-----------------------|--------------------------|---------------|----------------------------------|--------------------------------|----------------|----------------|--------------|--|--|--|
| Black<br>area<br>output | VM Y<br>output            | Black<br>area<br>hold | Y<br>output              | Vcc           | Automatic<br>filter<br>adjustmen | 030                            | Digital<br>GND | SDA            | SCL          |  |  |  |
| )                       | ) TA 1226N                |                       |                          |               |                                  |                                |                |                |              |  |  |  |
| Y<br>input              | Black<br>stretch<br>point | Black<br>peak<br>hold | Black<br>detect<br>level | Analog<br>GND | ABL                              | transfer<br>ratio<br>pensation | DAC1<br>output | DAC2<br>output | SCP<br>input |  |  |  |
| 1                       | 2                         | 3                     | 4                        | 5             | 6                                | $\bigcirc$                     | 8              | 9              | 10           |  |  |  |

### **TERMINAL FUNCTION**

| Pin<br>No. | PIN NAME               | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INTERFACE       | I / O SIGNAL                                 |
|------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|
| 1          | Y input                | Luminance signal input pin. Input<br>luminance signal after eliminating chrome<br>signal via capacitor. After luminance signal<br>is input to this pin, Y signal is clamped to<br>4.5V pedestal level. Standard input level is<br>1V <sub>p-p</sub> (including sync signal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | 1Vp-p<br>4.5V (Typical)<br>GND               |
| 2          | Black stretch<br>point | Used to set black stretch start point using<br>external resistance (DC level).<br>Note that setting this pin to 1.5V or below<br>enters test mode.<br>$(IRE) = \frac{1}{50} + \frac{1}{0} + \frac{1}{0}$ |                 | DC<br>3.5~7.0V                               |
| 3          | Black peak<br>hold     | Used to connect filter which detects<br>highest black level of luminance signal.<br>Voltage on this pin determines black<br>stretch gain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | €<br>7.5kΩ7100Ω | DC<br>3.8~5.2V                               |
| 4          | Black detect<br>level  | Used to control frequency (area) of black<br>level to be detected. Set area to be<br>detected using external capacitance and<br>internal resistance. In application circuit<br>example, setting is made so that frequency<br>of black level to be detected is 100kHz or<br>less.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | 0.7V <sub>p-p</sub><br>4.5V (Typical)<br>GND |

| Pin<br>No. | PIN NAME                                  | FUNCTION                                                                                                                                                                                                                                                                                                                                       | INTERFACE                                                         | I / O SIGNAL                                                            |
|------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|
| 5          | Analog GND                                | GND for analog circuit                                                                                                                                                                                                                                                                                                                         | _                                                                 | _                                                                       |
| 6          | ABL input                                 | Used to apply control current for ABL and black level compensation.                                                                                                                                                                                                                                                                            |                                                                   | _                                                                       |
| 7          | DC transfer<br>ratio<br>compensati-<br>on | Used to compensate DC transfer ratio.<br>Smaller Rx, larger compensation amount.<br>Injection of Rz varies start point of DC<br>transfer ratio compensation.<br>DC transfer ratio TDC (%)<br>=5k $\Omega$ / (5k $\Omega$ +Rx)×30+100<br>Rz + Rx<br>Rx mall (no Rz)<br>Rz mall (no Rz)<br>Rz mall (no Rz)<br>Rz mall (no Rz)<br>Rz mall (no Rz) |                                                                   | When pin 7 is<br>open :<br>0.7V <sub>p-p</sub><br>4.5V (Typical)<br>GND |
| 8<br>9     | DAC1<br>output<br>DAC2<br>output          | Open collector switches.<br>Maximum, input current value : 2mA<br>(minimum, drive resistance value : 6kΩ)                                                                                                                                                                                                                                      | <sup>8</sup> 9<br><sup>9</sup><br><sup>π</sup><br><sup>500Ω</sup> | DC<br>V <sub>CC</sub> or<br>GND                                         |
| 10         | SCP input                                 | SCP (Sand Castle Pulse) input pin. Typical<br>thresholds for CP (Clamp Pulse), HP<br>(Horizontal Pulse), and VP (Vertical Pulse)<br>are 6.9V, 3.1V, and 1.3V respectively.                                                                                                                                                                     |                                                                   | (Typical)                                                               |

| Pin<br>No. | PIN NAME                          | FUNCTION                                                                                                                                                                                                            | INTERFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I / O SIGNAL                                                                  |
|------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 11         | SCL                               | I <sup>2</sup> C bus SCL pin. Because surge<br>breakdown voltage is low, take external<br>countermeasure if necessary.                                                                                              | 2.3v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∫∫ <sup>5∨</sup><br>₀ <sub>∨</sub>                                            |
| 12         | SDA                               | I <sup>2</sup> C bus SDA pin. Because surge<br>breakdown voltage is low, take external<br>countermeasure if necessary. When Vcc<br>voltage is 3.2V or more, power-on reset is<br>applied.                           | C <sup>Y</sup> SDA<br>12<br>ΔCK<br>SDA<br>R<br>C <sup>Y</sup> SL<br>ACK<br>SDA<br>R<br>C <sup>Y</sup> SL<br>C <sup>Y</sup> SL | ACK bit 0V                                                                    |
| 13         | Digital GND                       | Logic circuit GND pin.                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | —                                                                             |
| 14         | OSC                               | Used to connect filter for obtaining 4MHz.<br>Using 4-MHz oscillation, automatically<br>adjusts built-in delay line.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DC<br>11.7V (Typical)<br>AC<br>420mV <sub>p-p</sub><br>(Typical)<br>(at 4MHz) |
| 15         | Automatic<br>filter<br>adjustment | Used to connect filter which automatically<br>adjusts delay time of IC built-in delay line.<br>Directly connecting external pull-up resistor<br>increases peak frequency.<br>Pulling down decreases peak frequency. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DC<br>5.9V (Typical)                                                          |

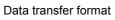
| Pin<br>No. | PIN NAME             | FUNCTION                                                                                                                                                                                                                                                   | INTERFACE | I / O SIGNAL                                  |
|------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------|
| 16         | VCC                  | V <sub>CC</sub> pin.<br>Connect 12V (typical).                                                                                                                                                                                                             | —         | -                                             |
| 17         | Y output             | Output pin for luminance signal on which Y is processed.<br>Max. output current value : $2mA$ (min. drive resistance value : $3.8k\Omega$ )                                                                                                                |           | 0.7V <sub>p-p</sub><br>7.8V (Typical)<br>GND  |
| 18         | Black area<br>hold   | Used to connect filter which detects black<br>area of input luminance signal.<br>Voltage changes depending on black area<br>of input signal pin.<br>Black area detection of bus control can<br>vary threshold of black area detect.                        |           | DC<br>0.2~6.7V                                |
| 19         | Y output for<br>VM   | Y output pin for VM (Velocity Modulation).<br>Maximum output current value : 2mA<br>(minimum drive resistance : 2.4kΩ).                                                                                                                                    |           | 0.7V <sub>p-p</sub><br>3.75V (Typical)<br>GND |
| 20         | Black area<br>output | Output pin for black area detected by black<br>area hold circuit. Outputs DC current<br>depending on input black area. Larger<br>black area, higher pin voltage. Control is<br>possible using output of this pin, depending<br>on input signal black area. |           | DC<br>0.5~6.8V                                |

### **BUS CONTROL MAP**

Y luminance transient improver IC

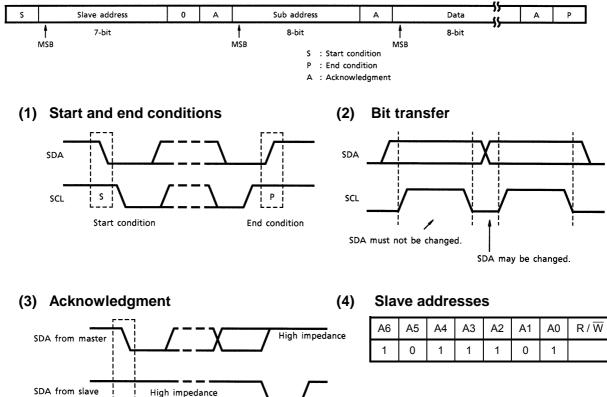
Slave address : 10111010 (BA (h) )

|                |           |           |           |                                       |   |         |                                |          |      | ( ) /                 |
|----------------|-----------|-----------|-----------|---------------------------------------|---|---------|--------------------------------|----------|------|-----------------------|
| SUB<br>ADDRESS | 7<br>MSB  | 6         | 5         | 4                                     | 3 | 2       | 1                              | 0<br>LSD | _    | ER-ON<br>VALUE<br>LSB |
| 00             | APAC      |           | Sharpness |                                       |   |         |                                |          | 0100 | 0000                  |
| 01             | Black are | ea detect | SRT       | SRT level                             |   | YNR     | γ correction                   |          | 0000 | 1011                  |
| 02             | DAC1      | DAC2      | VM        | VM gain                               |   | γ curve | Black<br>compens SRT<br>a-tion |          | 0011 | 0011                  |
| 03             | TE        | ST        |           | Frequency characte<br>compensation (F |   | _       | ninance trans<br>racking (RTC  |          | 1100 | 0100                  |


Note \* : Ignore data.

| FUNCTION                                             | CONTRO                                             | DL DATA                          | CONTROL CONTENTS                                                                                                                                                                                                                 | PRESET<br>VALUE          |
|------------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| APACON                                               | 0 : ON<br>1 : OFF                                  |                                  | Controls ON / OFF of DL (Delay Line) APACON in micro signal amplitude (approx. $20mV_{p\mbox{-}p})$ range.                                                                                                                       | ON<br>(0)                |
| Sharpness                                            | 7F : MAX<br>00 : MIN                               | Controls both DL APACON and SRT. |                                                                                                                                                                                                                                  | Center<br>value<br>(40h) |
| Black area<br>detect                                 | 11 : 40 IRE 10 : 30 IRE<br>01 : 20 IRE 00 : 10 IRE |                                  | Controls maximum level of black area detect from pedestal of black area detector circuit (pin 20 output).                                                                                                                        | 10 IRE<br>(00)           |
| SRT level                                            | 11 : 28 IRE<br>01 : 10 IRE                         | 10 : 14 IRE<br>00 : 7 IRE        | Controls signal amplitude at which SRT becomes valid.                                                                                                                                                                            | 28 IRE<br>(00)           |
| YNR                                                  | 0 : ON<br>1 : OFF                                  |                                  | Controls YNR ON / OFF.                                                                                                                                                                                                           | OFF<br>(1)               |
| γ correction                                         | 11 : OFF<br>01 : 80 IRE                            | 10 : 90 IRE<br>00 : 70 IRE       | Controls start point of $\boldsymbol{\gamma}$ correction (broken line at one point)                                                                                                                                              | OFF<br>(11)              |
| DAC1                                                 | 0 : OPEN<br>1 : ON                                 |                                  | Controls 1-bit DAC (open collector transistor output)                                                                                                                                                                            | OPEN<br>(0)              |
| DAC2                                                 | 0 : OPEN<br>1 : ON                                 |                                  | Controls 1-bit DAC (open collector transistor output)                                                                                                                                                                            | OPEN<br>(0)              |
| VM gain                                              | 11 : 0dB<br>01 : -6dB                              | 10 : −3dB<br>00 : OFF            | Controls gain between Y input and VM output.                                                                                                                                                                                     | 0dB<br>(00)              |
| Black stretch                                        | 0 : ON<br>1 : OFF                                  |                                  | Controls black stretch ON / OFF.                                                                                                                                                                                                 | OFF<br>(0)               |
| γ curve                                              | 0 : −2.4dB<br>1 : −1.6dB                           |                                  | Controls curve of $\boldsymbol{\gamma}$ correction (broken line at one point)                                                                                                                                                    | -2.4dB<br>(0)            |
| Black<br>compensation                                | 0 : ON<br>1 : OFF                                  |                                  | Controls automatic black level compensation (max. 7.5IRE).<br>(When black stretch gain is maximum, if highest black level<br>floats above pedestal level, DC-shifts maximum of 7.5IRE<br>picture duration up to pedestal level.) | ON<br>(0)                |
| SRT                                                  | 0 : OFF<br>1 : ON                                  |                                  | Controls SRT ON / OFF.                                                                                                                                                                                                           | ON<br>(1)                |
| TEST                                                 | 11 : Test3<br>01 : SHR                             | 10 : RTC<br>00 : RS              | Controls pin 20 output signal in test mode.                                                                                                                                                                                      | Test3<br>(11)            |
| 8MHz<br>frequency<br>characteristics<br>compensation | 111 : MAX (+6dB)<br>000 : MIN (0dB)                |                                  | Controls gain of DL APACON at 8MHz peak.                                                                                                                                                                                         | 0dB<br>(000)             |
| Luminance<br>transient<br>tracking                   | 111 : MAX<br>000 : MIN                             |                                  | Controls compensation ratio of SRT and DL APACON.<br>(Controls SRT level to be added to DL APACON.)                                                                                                                              | Center<br>value<br>(100) |

## <u>TOSHIBA</u>


### OVERVIEW OF I<sup>2</sup>C BUS CONTROL FORMAT

The bus control format for TA1226N conforms to the Philips standard.



SCL from master

S



Purchase of TOSHIBA I<sup>2</sup>C components conveys a license under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips.

### MAXIMUM RATINGS (Ta = 25±3°C)

| CHARACTERISTIC                   | SYMBOL                  | RATING  | UNIT             |
|----------------------------------|-------------------------|---------|------------------|
| Supply Voltage                   | V <sub>ccmax</sub>      | 14      | V                |
| Input Pin Signal Voltage         | ein <sub>max</sub>      | 12      | V <sub>p-p</sub> |
| Power Dissipation                | P <sub>D</sub> (Note 1) | 1400    | mW               |
| Power Dissipation Decrease Ratio | 1 / Qjp                 | -11.2   | mW / °C          |
| Operating Temperature            | T <sub>opr</sub>        | -20~65  | °C               |
| Storage Temperature              | T <sub>stg</sub>        | -55~150 | °C               |

Note 1: See figure below.

Note 2: Since the device is susceptible to surge voltage, take great care when handling.

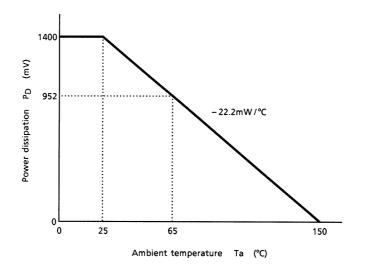



Figure Temperature decrease curve of power dissipation

#### **RECOMMENDED SUPPLY VOLTAGE**

| PIN<br>No. | PIN NAME        | MIN  | TYP. | MAX  | UNIT |
|------------|-----------------|------|------|------|------|
| 16         | V <sub>CC</sub> | 11.0 | 12.0 | 13.0 | V    |

### ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $V_{CC} = 12V$ , Ta = 25±3°C) DC characteristics Supply voltage

UNIT

mΑ

MAX

48.0

# CHARACTERISTIC SYMBOL MIN TYP.

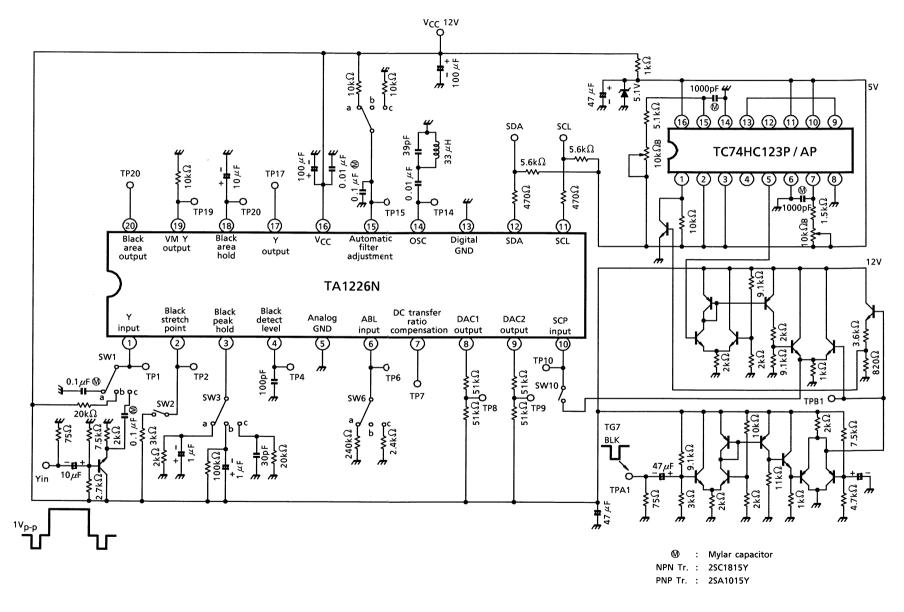
 $I_{CC}$ 

26.0

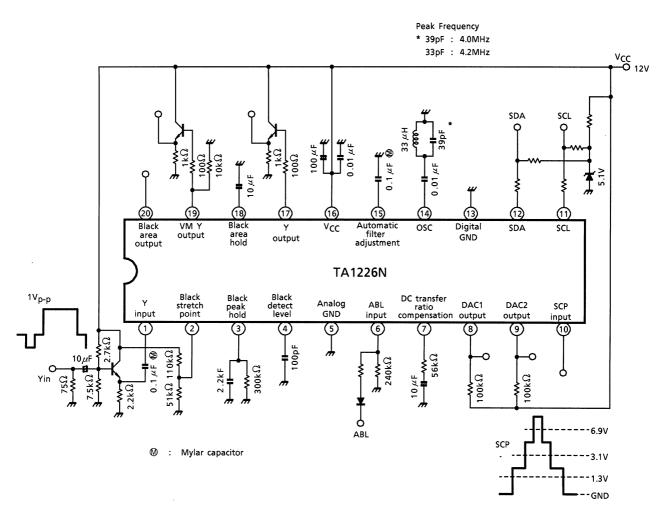
35.5

| Pin | voltage |
|-----|---------|

Supply Voltage


| PIN<br>No. | PIN NAME                          | SYMBOL | MIN  | TYP. | MAX  | UNIT | REMARKS                       |  |
|------------|-----------------------------------|--------|------|------|------|------|-------------------------------|--|
| 1          | Y input                           | V1     | 4.20 | 4.50 | 4.80 |      | No input, SCP input           |  |
| 4          | Black detect level                | V4     | 4.20 | 4.50 | 4.80 |      |                               |  |
| 6          | ABL input                         | V6     | 2.00 | 2.50 | 2.90 |      |                               |  |
| 7          | DC transfer ratio<br>compensation | V7     | 4.20 | 4.50 | 4.80 | V    | No input, Pin open, SCP input |  |
| 8          | DAC1 output                       | V8     | 11.5 | 11.9 | 12.0 |      |                               |  |
| 9          | DAC2 output                       | V9     | 11.5 | 11.9 | 12.0 |      | No input, SCP input           |  |
| 17         | Y output                          | V17    | 7.45 | 7.80 | 8.15 |      | No input, SCP input           |  |
| 19         | VM Y output                       | V19    | 3.30 | 3.75 | 4.20 |      |                               |  |

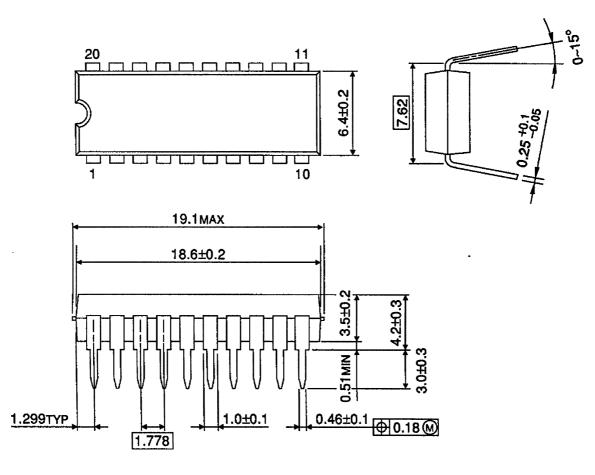
#### AC characteristics (Unless otherwise specified, $V_{CC} = 12V$ , Ta = 25±3°C)


| CHARACTERISTIC                                        | SYMBOL            | TEST<br>CIR-<br>CUIT | TEST CONDITION | MIN  | TYP. | MAX  | UNIT       |
|-------------------------------------------------------|-------------------|----------------------|----------------|------|------|------|------------|
| Y Input Pedestal Clamp Voltage                        | V1                | _                    | (Note 1)       | 4.2  | 4.5  | 4.8  | V          |
| Pin 7 Output Impedance                                | Z <sub>OUT7</sub> | _                    | (Note 2)       | 4.3  | 5.5  | 6.7  | kΩ         |
| DC Transfer Ratio Compensation<br>Amp Gain            | A <sub>V7</sub>   | _                    | (Note 3)       | 0.25 | 0.34 | 0.45 | _          |
| Dynamic ABL Maximum Sensitivity                       | G <sub>V6</sub>   | _                    | (Note 4)       | 3.4  | 5    | 6.6  | mV /<br>μA |
| Black Stretch Amp Maximum Gain                        | G <sub>VBE</sub>  |                      | (Note 5)       | 1.30 | 1.40 | 1.50 | _          |
| Y Input Dynamic Range                                 | DR <sub>1</sub>   | _                    | (Note 6)       | 0.9  | 1.0  | 1.2  | V          |
| Luminance Transient Control Peaking<br>Frequency      | FP                | _                    | (Note 7)       | 3.6  | 4    | 4.4  | MHz        |
| Luminanaa Transiant Control Banga                     | G <sub>SMAX</sub> |                      | (Nata 0)       | 9    | 12   | 15   | dB         |
| Luminance Transient Control Range                     | G <sub>SMIN</sub> | _                    | (Note 8)       | -12  | -9   | -6   | uБ         |
| Luminance Transient Control Center<br>Characteristics | G <sub>SCT</sub>  | _                    | (Note 9)       | 4    | 5.5  | 7    | dB         |
| Peaking Frequency Change Range                        | FP <sub>MAX</sub> |                      | (Note 10)      | 4.3  | 5.9  | 7.8  | MHz        |
| Feaking Frequency Change Range                        | FP <sub>MIN</sub> |                      | (Note TO)      | 1.8  | 2.7  | 3.6  |            |

| CHARACTERISTIC                                                                                | SYMBOL             | TEST<br>CIR-<br>CUIT | TEST CONDITION | MIN  | TYP. | MAX   | UNIT |
|-----------------------------------------------------------------------------------------------|--------------------|----------------------|----------------|------|------|-------|------|
| Super Real Transient 2T Pulse<br>Response                                                     | SRT <sub>MAX</sub> |                      | (Note 11)      | 20   | 40   | 60    | ns   |
|                                                                                               | SRT <sub>CEN</sub> |                      |                | 110  | 130  | 150   |      |
|                                                                                               | SRT <sub>MIN</sub> |                      |                | 170  | 190  | 210   |      |
| Noise Reduce                                                                                  | GNR                | _                    | (Note 12)      | -15  | -7   | -1.0  | dB   |
| Black Stretch Point                                                                           | V <sub>ST1</sub>   |                      | (Note 13)      | 250  | 310  | 370   | mV   |
|                                                                                               | V <sub>ST2</sub>   |                      |                | 340  | 430  | 520   |      |
| Black Peak Detect On Voltage                                                                  | V <sub>BPON</sub>  | _                    | (Note 14)      | 1.2  | 1.5  | 1.8   | V    |
| Black Detect Delay Time                                                                       | T <sub>BP1</sub>   |                      | (Note 15)      | 0    | 50   | 170   | ns   |
|                                                                                               | T <sub>BP2</sub>   |                      |                |      | 50   | 170   |      |
| VM Output Y Gain                                                                              | G <sub>VM00</sub>  |                      | (Note 16)      |      | -40  | -20   | dB   |
|                                                                                               | G <sub>VM01</sub>  |                      |                | -7   | -6   | -5    |      |
|                                                                                               | G <sub>VM10</sub>  |                      |                | -4   | -3   | -2    |      |
|                                                                                               | G <sub>VM11</sub>  |                      |                | -1   | 0    | 1     |      |
| γ Correction Point                                                                            | V <sub>Y00</sub>   |                      | (Note 17)      | 530  | 575  | 620   | mV   |
|                                                                                               | V <sub>Y01</sub>   |                      |                | 600  | 645  | 690   |      |
|                                                                                               | V <sub>Y10</sub>   |                      |                | 620  | 665  | 710   |      |
| γ Correction Curve                                                                            | G <sub>y0</sub>    |                      | (Note 18)      | -3.2 | -2.4 | -1.6  | dB   |
|                                                                                               | G <sub>γ1</sub>    |                      |                | -2.4 | -1.6 | -0.8  |      |
| Black Peak Detect Level                                                                       | V <sub>BP</sub>    | _                    | (Note 19)      | 5    | 20   | 35    | mV   |
| DL APACON Limiter Range                                                                       | V <sub>AL</sub>    | _                    | (Note 20)      | 20   | 45   | 70    | mV   |
| Black Area Detected Level                                                                     | V <sub>BS00</sub>  |                      | (Note 21)      | 50   | 80   | 110   | mV   |
|                                                                                               | V <sub>BS01</sub>  |                      |                | 130  | 160  | 190   |      |
|                                                                                               | V <sub>BS10</sub>  |                      |                | 200  | 230  | 260   |      |
|                                                                                               | V <sub>BS11</sub>  |                      |                | 280  | 310  | 340   |      |
| Black Area Hold Pin Voltage                                                                   | $\Delta V_{BS00}$  |                      | (Note 22)      | -260 | 0    | 260   | mV   |
|                                                                                               | ΔV <sub>BS01</sub> |                      |                |      |      |       |      |
| Black Area Output Pin Voltage<br>Difference                                                   | ΔV <sub>BS10</sub> |                      |                |      |      |       |      |
|                                                                                               | ΔV <sub>BS11</sub> |                      |                |      |      |       |      |
| Black Area Output Pin Voltage<br>Change With Respect To Black Area<br>Hold Pin Voltage Change | ΔV <sub>2000</sub> |                      | (Note 23)      | 410  | 500  | 610 n | mV   |
|                                                                                               | ΔV <sub>2001</sub> |                      |                |      |      |       |      |
|                                                                                               | ΔV <sub>2010</sub> |                      |                |      |      |       |      |
|                                                                                               | ΔV <sub>2011</sub> |                      |                |      |      |       |      |
| Frequency Characteristics<br>Compensation                                                     | FT <sub>MAX</sub>  | _                    | (Note 24)      | 5    | 6    | 7     | dB   |
|                                                                                               | FT <sub>MIN</sub>  |                      |                | -1.5 | 0    | -1.5  |      |
| Clamp Voltage On Voltage                                                                      | V <sub>CLON</sub>  | _                    | (Note 25)      | 6.7  | 6.9  | 7.1   | V    |
| Horizontal Blanking On Voltage                                                                | V <sub>HP</sub>    | _                    |                | 2.9  | 3.1  | 3.3   | V    |
| Vertical Blanking On Voltage                                                                  | Vvp                | _                    | _              | 1.1  | 1.3  | 1.5   | V    |
| 0                                                                                             | * 1                | I                    |                |      |      |       |      |

### **TEST CIRCUIT**




### **APPLICATION CIRCUIT**



### PACKAGE DIMENSIONS

SDIP20-P-300-1.78

Unit : mm



Weight: 1.02g (Typ.)