TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T7779

CRT / LCD Controller LSI

The T7779 is a controller LSI for a raster–scan–type CRT display and large–scale dot matrix LCD. It can be used in applications ranging from small–scale character display systems to large–scale graphic display systems.

Features

- Refresh memory address \therefore MA0 to MA15 (2¹⁶)
- Line scanning address
- Frame buffer capacity
- : Max 64 KBytes (character) Max 2 MBytes (graphic)

 $: LA0 \text{ to } LA4 (2^5)$

- Number of characters per line : 1 to 255
- Number of character rows : 1 to 255
- Scrolling, Paging
- Built-in light pen-detecting function
- Horizontal dots per character according to font : 5, 6, 7, 8
- Vertical dots per character according to font : 1 to 32
- Data output : 1-bit output, 2-bit (odd/even) output, 4-bit output
- Various attribute functions

: Underline Cursor ON/OFF Underline Cursor Blink Character ON/OFF Character Normal/Inverse Character Blink Blink Frequency Change

- External synchronization (Non-Interlace mode only)
- HMCS6800-family-compatible bus interface
- Single 5-V power supply
- High speed operation : 18 MHz
- Low power consumption
- CMOS, Si-Gate structure
- 100-pin flat plastic package

Block Diagram

Pin Assignment

Pin Functions

Pin Name	1/0	Functions								
MA0 to MA15	Output	(Memory Address) Memory refresh address	(Memory Address) Memory refresh address							
LA0 to LA4	Output	(Line Address) Line scanning address for character generator								
D0 to D7	1/0	(Data) Data I / O terminal for built−in registers								
d0 to d7	Input	(Data) Parallel data input for LCD								
ADF	Input	(Address Float) For LA / MA outputs in High Impedance mode.	High impedand	ce when s	set to 0					
CSREN	Input	(Cursor Enable) Underline cursor enabling signal Display of cursor is enabled when set to 1 (d0 t	o d7 are inhibi	ted)						
RVEN	Input	(Reverse Enable) Reverse attribute signal. Display of d0 to d7 is i cursor)	(Reverse Enable) Reverse attribute signal. Display of d0 to d7 is inverted when set to 1 (except for the cursor)							
BCLK	Input	(Blink Clock) Clock input for blink. 0 = ON, 1 = OFF	(Blink Clock) Clock input for blink. 0 = ON, 1 = OFF							
UBLNK	Input	(Underline Blink) Underline blink attribute signal. Blink is enablec	(Underline Blink) Underline blink attribute signal. Blink is enabled when set to 1							
CBLNK	Input	(Character Blink) Character blink attribute signal. Blink is enabled	d when set to 1							
ULEN	Input	(Underline Enable) Underline attribute signal. Underline is displaye	d when set to	1						
CHREN	Input	(Character Enable) Data input enabling signal. Display is enabled v	when set to 1							
	1	(Blink Mode)	BMODE	0	1	1				
BMODE	Input	To change an external / internal blink clock	BCLK	—	0	1				
		f _{FR} : Frame frequency	Blink Freq.	f BCLK	f _{FR} / 8	f _{FR} / 16				
SET	Input	(Set) To set built−in registers. Set when SET = 1 anc	(Set) To set built-in registers. Set when SET = 1 and CRT / LCD = 1							
HR / LR	Input	(High Resolution / Low Resolution) High Resolution / Low Resolution mode select. High Resolution mode is selected when set to 1								
CRT / LCD	Input	(Cathode Ray Tube / Liquid Crystal Display) CRT / LCD mode select. LCD mode is selected	when set to 1							

Pin Name	1/0	Functio	ons					
	lenut	(Chip Select)	CS	R _S	Register name			
US US	Input	Chip select signal input	1	_	Invalid			
Po	Input	(Register Select)	0	0	Address register			
r\\$	input	Register select signal input	0	1	Control register			
E	Input	(Enable) Enable signal input. Usually connected to syste	em φ2 clor	ck.				
R/W	Input	(Read / Write) R / W signal input. Read when set to 1						
RES	Input	(Reset) Reset signal input. Reset when set to 0						
LPSTB	Input	(Light Pen Strobe) Light pen strobe signal input						
DSPTMG	Output	(Display Timing) Display timing signal						
CUDISP	Output	(Cursor Display) Cursor display signal						
CUDISP / LP	Output	(Cursor Display / Latch Pulse) Cursor display / latch pulse						
HSYNC	Output	(Horizontal SYNC) Horizontal synchronization						
HSYNC / FR	Output	(Horizontal SYNC / Frame) Horizontal sync / frame						
VSYNC	Output	(Vertical SYNC) Vertical synchronization						
VSYNC / FP	Output	(Vertical SYNC / Frame Pulse) Vertical sync / frame pulse						
SCP	Output	(Shift Clock Pulse) Shift clock pulse for column driver						
MCS	Output	(Multi Controller Sync) Multi controller synchronization						
U/L	Output	(Upper / Lower) Upper / lower screen signal. Upper screen whe	(Upper / Lower) Upper / lower screen signal. Upper screen when set to 0					
CYCLE	Output	(Cycle Steal) Cycle steal signal						
CE	Output	(Chip Enable) Chip enable signal						
DSC1	Input	(Data Sending Control 1) Serial data format select						
LD3 / DSC0	0/1	(Lower Data 3 / Data Sending Control 0) Serial data for column driver / serial data forma	t select					

Pin Name	I/O		Functions						
LD0 to LD2	Output	(Lower Data 0 to 2) Serial data for column driver							
UD0 to UD3	Output	(Upper Data 0 to 3) Serial data for column driver							
EXS	Input	(External Sync) External synchronization							
		(Horizontal Select)	HS0	0	1	0	1		
HS0, HS1	Input To determine the number of horizontal dots per font	To determine the number of	HS1	0	0	1	1		
		horizontal dots per font	Horizontal dot	5	6	7	8		
Q ₀	Output	Built-in dot counter output	Built-in dot counter output						
Q ₁ / CLK	0/1	Built-in dot counter output / word cl	ock input						
Q ₂ / φΕ	0/1	Built-in dot counter output / dot cloo	ck input						
EXT / INT	Input	(External / Internal) External / internal clock select. Inter	rnal clock when s	et to 1					
XI, XO	—	Connect to crystal oscillator							
TEST1	Input	(Test) Usually connected to V _{DD}							
V _{DD}	—	Power supply (5 V)							
V _{SS}	_	Power supply (0 V)							

Note 1: DSC1 = 0: LD3 / DSC0 = DSC0 (input)

- (a) DSC0 = 0 (1-bit mode)UD0: for dots in the upper areaLD0: for dots in the lower area
- (b) DSC0 = 1 (2-bit mode)UD0: for even dots in the upper areaUD1: for odd dots in the upper area
 - LD0: for even dots in the lower area
 - LD1: for odd dots in the lower area
- Note 2: DSC1 = 1 (4-bit mode): LD3 / DSC0 = LD3 (output) UD0 to UD3: for dots in the upper area
 - LD0 to LD3: for dots in the lower area

Description of Pins

• HR/LR

The HR / LR input is used to select either High Resolution mode or Low Resolution mode, in the LCD mode. The difference between the High Resolution mode and the Low Resolution mode is shown in the following diagram.

• EXS

In Non–Interlace mode only, the $\overline{\text{EXS}}$ input is used to synchronize the slave–CLC to the master–CLC.

• SET

The SET input is used to set the internal registers. In LCD mode, a high level on the SET input forces the internal registers into the following state:

De vieter Ne	De sistes Norse	2 ≤ N	r ≤ 31	Nr = 0 or 1		
Register No.	Register Name	LR	HR	LR	HR	
R ₀	Horizontal Total	47	87	47	87	
R ₁	Horizontal Displayed	*	*	*	*	
R ₂	H. Sync Position	*	*	*	*	
R ₃	Sync Width	*	*	*	*	
R ₄	Vertical Total	12	12	51	51	
R ₅	V. Total Adjust	0	0	0	0	
R ₆	Vertical Displayed	255	255	255	255	
R ₇	V. Sync Position	255	255	255	255	
R ₈	Interlace Mode and Skew	0	0	0	0	
R ₉	Max. Scan Line Address	*	*	*	*	
R ₁₀	Cursor Start	*	*	*	*	
R ₁₁	Cursor End	*	*	*	*	
R ₁₂	Start Address (H)	*	*	*	*	
R ₁₃	Start Address (L)	*	*	*	*	
R ₁₄	Cursor Address (H)	*	*	*	*	
R ₁₅	Cursor Address (L)	*	*	*	*	
R ₁₆	Light Pen (H)	*	*	*	*	
R ₁₇	Light Pen (L)	*	*	*	*	
R ₁₈	SCP Start Position	128	128	128	128	
R ₁₉	SCP End Position	Nhd	Nhd	Nhd	Nhd	
R ₂₀	Display Start Position	0	0	0	0	
R ₂₁	Display End Position	Nhd	Nhd	Nhd	Nhd	
R ₂₂	Additional Address (H)	2	4	8	8	
R ₂₃	Additional Address (L)	8	16	32	32	

LR: Low Resolution mode

HR: High Resolution mode

*: Does not change

• CE

The \overline{CE} output is a low-active signal which indicates the presence of a valid data address (d0 to d7, attribute) to the external logic

 \star The initial MA is determined by R₁₂/R₁₃ (Start Address Register), which is zero in this timing example.

Built-in Registers

Internal operation of the T7779 is determined by the value of the built–in registers. When you want to write to these registers, first you must write the control register address into the address register ($R_S = 0$). Then you can write (or read) the value into (or from) the control register ($R_S = 1$).

CS	R _S	Register	Read	Write
1	_	Invalid	_	_
0	0	Address Register	×	0
0	1	Control Register	_	_

		0)/14	Data Bit								
Register No.	Register Name	SYM.	7	6	5	4	3	2	1	0	
R ₀	Horizontal Total*	Nht									
R ₁	Horizontal Displayed	Nhd									
R ₂	Horizontal Sync Position*	Nhsp									
R ₃	Sync Width	Nvsw Nhsw	VW3 to VW0 HW			HW3 t	to HW0				
R ₄	Vertical Total*	N∨t									
R ₅	Vertical Total Adjust	Nadj		-	_						
R ₆	Vertical Displayed	Nvd									
R ₇	Vertical Sync Position*	Nvsp									
R ₈	Interlace Mode and Skew		C ₁	C ₀	D ₁	D ₀	-	_	V	S	
R ₉	Max Scan Line Address	Nr		—							
R ₁₀	Cursor Start	Ncsr	CUL	В	Р						
R ₁₁	Cursor End	Ncer		_							

		0)44	Data Bit							
Register No.	Register Name	SYM.	7	6	5	4	3	2	1	0
R ₁₂	Start Address (H)									
R ₁₃	Start Address (L)									
R ₁₄	Cursor Address (H)									
R ₁₅	Cursor Address (L)									
R ₁₆	Light Pen (H)									
R ₁₇	Light Pen (L)			_						
R ₁₈	SCP Start Position	Nssp	SC							
R ₁₉	SCP End Position	Nsep								
R ₂₀	Display Start Position	Ndsp								
R ₂₁	Display End Position	Ndep								
R ₂₂	Additional Address (H)									
R ₂₃	Additional Address (L)									

Note 1: Write Value of register marked by "*"

(Write value) = (fixed value) -1

Note 2: Write Value of R9

• Non-Interlace mode ······ (Write Value Nr) = (Appointing value) - 1

Interlace Sync mode (Write Value Nr) = (Appointing value) - 1

• Interlace Sync and Video mode (Write Value Nr) = (Appointing value) – 2

Note 3: For Interlace mode, the horizontal total register (R_0) must be odd.

Note 4: Bits 0 to 3 of R_3 determine the width of the horizontal sync. pulse.

Bits 4 to 7 of R_3 determine the width of the vertical sync. pulse.

Vw3	Vw2	Vw1	Vw0	Pulse Width
0	0	0	0	16H
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Hw3	Hw2	Hw1	Hw0	Pulse Width
0	0	0	0	Don't care
0	0	0	1	1HC
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

H: Scan-line time

HC: Character time

Note 5: Bits 0 and 1 of R_8 control the Interlace mode. Bits 4 and 5 of R_8 control the DSPTMG skew. Bits 6 and 7 of R_8 control the CUDISP skew.

V	S	Raster-Scan Mode	D ₁	D ₀	Dsptmg Skew	C ₁	C ₀	Cudisp Skew
0	0	Non-Interlace Mode	0	0	No Character	0	0	No Character
0	1				SKew			Skew
1	0	Interlace Sync Mode	0	1	One Character	0	1	One Character
		Interlage Cure and			Skew			Skew
1	1	Video Mode	1	0	Two Character Skew	1	0	Two Character Skew
			1	1	Not Available	1	1	Not Available

Note 6: Bit 5 of R₁₀ is used for blink period control, bit 6 is used to select blink or non-blink, and Bit 7 is used to select the cursor display screen for the LCD.

В	Ρ	Cursor Display Mode
0	0	Non-Blink
0	1	Cursor Non-Display
1	0	Blink 1/16 Field Rate
1	1	Blink 1/32 Field Rate

CUL	Cursor Display Screen
0	Upper Screen
1	Lower Screen

Note 7: Bit 7 of R_{18} determines the number of the LCD screen.

S _C	Number of LCD Screen
0	1
1	2

• Address register

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	Write					REGIST	ER AD	DRESS	,

This 5-bit write-only register contains the address of one of the other 24 registers. When you want to write or read one of the registers (R_0 to R_{23}), first you must write the address of the register in this register.

• Control register

Note: ∇ = CRT mode, \blacksquare = LCD mode

(1) Horizontal total register (R₀)

Rs	R / W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
1	Write		Nht-1									

 \bigtriangledown This 8-bit write-only register determines the horizontal sync. frequency. The value entered in this register should be one less than the total number of characters on one line.

▼ This 8-bit write-only register determines the non-displayed character times (retrace). If there is no retrace period, this LSI does not operate correctly. The retrace period is the difference between Nht + 1 and Nhd (= Nht + 1 - Nhd). Usually this value should be set to Nhd + 1. In 1 Character Skew mode, set the value to Nhd + 2. In 2 Character Skew mode, set the value to Nhd + 3.

(2) Horizontal displayed register (R1)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	Write	Nhd								

 ∇ V This 8-bit write-only register determines the number of characters displayed per line. The contents of R_1 must be less than the contents of R_0 (Nhd < Nht).

(3) Horizontal sync. position register (R₂)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Write	Nhsp-1							

 \bigtriangledown This 8-bit write-only register determines the horizontal sync. position. The value held in this register is one less than the computed number of characters.

▼ The horizontal sync. pulse is not necessary. However, you can use it if you wish.

(4) Sync width register (R₃)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	Write		Nv	sw		Nhsw					

 ∇ V This 8-bit write-only register determines the width of the vertical and horizontal sync. pulses.

When Nvsw = 1 to 15, pulse width = 1 to 15H (H: time to scan 1 line)

When Nvsw = 0, pulse width = 16 H

When Nhsw = 1 to 15, pulse width = 1 to 15HC (HC: time to scan 1 character) When Nhsw = 0, don't care.

(5) Vertical total register (R₄)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	Write	Nvt-1									

 \bigtriangledown This 8-bit write-only register determines the vertical sync. frequency. The value entered in this register is one less than the number of lines of characters.

▼ This 8-bit write-only register determines the number of rows displayed on the screen. The value held in the register is one less than the number of lines of characters.

(6) Vertical total adjust register (R₅)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	Write				Nadj					

 \bigtriangledown This 5–bit write–only register adjusts the total number of scan lines per frame.

▼ Usually set to 0.

(7) Vertical displayed register (R₆)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	Write	Nvd									

 \bigtriangledown This 8-bit write-only register determines the number of character rows displayed on the screen. The contents of R6 is less than the contents of R4 (Nvd < Nvt).

▼ The contents of R_6 must be more than the contents of R_4 (Nvd > Nvt). Usually set to FF (Hex).

(8) Vertical sync. position register (R7)

Rs	R / W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
1	Write		Nvsp-1									

 ∇ This 8-bit write-only register determines the vertical sync. position. The value entered in this register is one less than the computed number of character lines.

▼ The vertical sync. pulse is not necessary. However, you can use it if you wish.

(9) Interlace mode and skew register (R_8)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Write	с ₁	C ₀	D ₁	D ₀			V	S

V	s	INTERLACE MODE	D ₁	D ₀	DSPTMG	6	1	c ₀	CUDISP
0	0	Non-Interlace Mode	0	0	No Character Skew	Γ)	0	No Character Skew
0	1	Non-Interface Mode		1	1-Character Skew)	1	1-Character Skew
1	0	Interlace Sync Mode	1	0	2-Character Skew		I	0	2-Character Skew
1	1	Interlace Sync and Video Mode	1	1	Not Available		I	1	Not Available

 \bigtriangledown Interlace modes are selected using the two low order bits of this 6-bit write-only register. DSPTMG skew is controlled by bits 4 and 5 of R₈. CUDISP skew is controlled by bits 6 and 7 of R₈.

 \blacktriangledown Non–Interlace mode only is available. The skew function is the same as for CRT mode.

(10) Max scan line address register (R₉)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Write						Nr-1		

▽ This 5-bit write-only register determines the number of scan lines per character row. In Non-Interlace or Interlace Sync mode, the value programmed in the register is one less than the number of scan lines. In Interlace Sync and Video mode, the value is two less than the number of scan lines.

▼ This 5-bit write-only register determines the number of horizontal dots per character row. The value is one less than the number of horizontal dots.

(11) Cursor start register (R10)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Write	CUL	В	Р			Ncsr		

- ∇ This register determines the start scan line of the cursor and the cursor display mode. Bits 0 to 4 of R10 determine the start scan line of the cursor. Bits 5 and 6 (P, B) of R10 determine the cursor display mode.
- ▼ In LCD 2-screen mode, bit 7 of R₁₀ determines the cursor display screen. If you want to program the cursor position anywhere in the lower screen, bit 7 of R₁₀ must be set to 1.

(12) Cursor end register (R_{11})

Rs	R / W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Write						Ncer		

 $\bigtriangledown \blacksquare$ This 5–bit write–only register determines the last scan line of cursor.

В	Ρ	CURSOR DISPLAY MODE
0	0	Non-Blink
0	1	Non-Display
1	0	Blink 1/16 Field Rate
1	1	Blink 1/32 Field Rate

(13) Start address register (R₁₂, R₁₃)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	R/W		START ADDRESS (H)-R ₁₂							
1	R/W		START ADDRESS (L)-R ₁₃							

▽▼ This 16-bit read / write register pair determines the memory address corresponding to the first line on the screen. Hardware scrolling by line or page may be accomplished by modifying the contents of this register.

(14) Cursor address register (R₁₄, R₁₅)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	R/W		CURSOR ADDRESS (H)-R ₁₄								
1	R/W		CURSOR ADDRESS (L)-R ₁₅								

 \bigtriangledown This 16–bit read / write register pair determines the cursor display address.

▼ The built-in address counter generates only upper screen addresses. If you want to program the cursor position anywhere in the lower screen, this register pair must be programmed with the upper screen address corresponding to the lower screen address.

(15) Light pen register (R₁₆, R₁₇)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	Read		LIGHT PEN ADDRESS (H)-R ₁₆								
1	Read		LIGHT PEN ADDRESS (L)-R ₁₇								

 \bigtriangledown This 16-bit read–only register pair captures the refresh address on the positive edge of LPSTB.

(16) SCP start position register (R₁₈)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	R/W	SC				Nssp				$S_{C} = 0$: 1 screen, S

▼ This 8-bit read / write register determines the SCP (Shift Clock Pulse) start position. The value held in bits 0 to 6 of this register is one less than the computed number of characters. This value is set to 0. Bit 7 of R₁₈ determines the number of LCD screens.

(17) SCP end position register (R₁₉)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	R/W		Nsep								

▼ This 8-bit read / write register determines the SCP end position. The value held in the register is one less than the computed number of characters. This register is usually set to the same value as R₁.

(18) Display start position register (R₂₀)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1.	R/W		Ndsp							

∇ ▼ This 8-bit read / write register determines the display start position. The value held in the register is one less than the computed number of characters. The register is usually set to 0.

(19) Display end position register (R₂₁)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	R/W		Ndep							

 $\nabla \mathbf{V}$ This 8-bit read / write register determines the display end position. The value held in the register is one less than the computed number of characters. This register is usually set to the same value as R_1 .

(20) Additional address register (R₂₂, R₂₃)

Rs	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
1	R/W		ADDITIONAL ADDRESS (H)-R22								
1	R/W		ADDITIONAL ADDRESS (L)-R ₂₃								

▼ The built-in address counter generates only upper screen addresses. The T7779 adds the contents of this 16-bit register pair to the address counter value to form the lower screen address.

Function Description

• Register functions

(1) An example of register values

An example of register values in LCD 2-Screen mode is shown below

(2) Horizontal scroll function (LCD mode)

Hardware horizontal character scrolling may be accomplished by modifying the contents of the SCP start position register (R₁₈) and SCP end position register (R₁₉).

 	Horizontal Displayed (R ₁ = 10H)														-					
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F		0	0	01	0
10																	1	þ		
20	1																2	0		
30	1																3	D		
40	1																4	D		
50	1							Dis	play	Peri	od						5	D		
60	1																6	D		
70																	7	D		
ŧ															l		ł	ł		
SCP S	SCP Start Position ($R_{18} = 80H$) SCP End Position ($R_{19} = 08H$)											sc	P S	ta						
Displa	ay St	art f	Posit	ion i	(R ₂₀	= 00	H)		Dis	olay	End	Pos	ition	(R ₂	1 = 1	0H)	Disp	ay	Sta	art

(3) Mask function

Hardware character masking may be accomplished by modifying the contents of the display start position register (R_{20}) and display end position register (R_{21}). This function is useful for the multicontroller system.

(4) Vertical scroll function

Hardware vertical scrolling by line or by page may be accomplished by modifying the contents of the start address register $(R_{12, 13})$ without modifying the contents of refresh memory.

-	Horizontal Displayed (R ₁ = 10H)	*		Horizontal Displayed (R ₁ = 10H)															
00	01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F			00	01 ()2	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
10	Start Address (R12, 13 = 00, 00H)	T		10															
20		I		20	Start	Ad	ldre	ss (R	12,	13 =	00,	10H)						
30			Display	30															
40		Τ	Peri.	40															
50				50															
60				60															
70				70															

(5) Skew function

If the memory access cycle and the data latch are not synchronized to each other, this function must be used.

Screen Format

• Relationship between memory address (LA0 to LA4) and memory data (d0 to d7) The addresses of vertical dots are in hex. format.

а	: Valid	data	when	these	are	5	hor	izonta	l dots	(HS0 = 0,	HS1 =	0)

- b : Valid data when these are 6 horizontal dots (HS0 = 1, HS1 = 0)
- $c\,$: Valid data when these are 7 horizontal dots (HS0 = 0, HS1 = 1) d : Valid data when these are 8 horizontal dots (HS0 = 1, HS1 = 1)

EX.) When address is 07H

LA4	LA3	LA2	LA1	LA0							
0	0	1	1	1							
0	7										

• Relationship between the display screen and memory addresses (MA0 to MA15, LA0 to LA4)

	HAR- ACTER		Displa	ay period		Retra	ce period		
LINE	LA	- 1	2		80	81		1	
	000	0000	0001	\rightarrow	004F	0050		17	-
	001	0000	0001	\rightarrow	004F	0050			
	010							1	
1	011						,		
•	100								
	101								
	110								
	111	0000	0001	→	004F	0050		┨│	
	000	0050	0051	→ ·	009F	00A0		4	
2									upper screen
	111	0050	0051		009F	0040		1	
								1	
	000	03C0	03C1	\rightarrow	040F	0410		1	
								1	
13									
15									
••••	111	03C0	03C1	\rightarrow	040F	0410			
	000	0410	0411	→ 	045F	0460		Î	
14									
	111	0410	0411		0455	0460			
					0451	0400		1	lower screen
¥	000	0780	0781	→	07CF	07D0		1	Lower server
				-				1	
25									
25									
	111	0780	0781	\rightarrow	07CF	07D0]_[

Note: State address: 0000H LCD lower screen additional address: 0410H Nr (maximum raster address): 07H 80 characters × 13 lines × 2 screens

• Operating Modes

The T7779 has two operating modes; CRT mode and LCD mode. LCD mode is further subdivided into 1–Screen mode, 2–Screen mode, High Resolution mode and Low Resolution mode.

(1) CRT mode

When CRT / LCD = 0, the T7779 operates in CRT mode. The T7779 consists of a CRT controller and LCD interface circuit. In CRT mode, the T7779 uses the CRT controller circuit only. When the T7779 is operating in CRT mode, you can use the parallel-to-serial circuit that is included in the LCD interface circuit. However, when you have to operate the P / S circuit at more than 18 MHz, you cannot use the built-in P / S circuit.

(2) LCD mode

When CRT / LCD = 1, the T7779 operates in LCD mode. When the T7779 is operating in LCD mode, the CRT controller circuit generates only upper screen addresses.

a) 2- Screen mode

When the T7779 is operating in LCD mode, the cycle time of the built-in address counter is twice that when the T7779 is operating in CRT mode. In 2–Screen mode (R_{18} -bit 7 = 1), the T7779 generates the lower screen address by adding the built-in address counter value and the contents of R_{22} , R_{23} . When U / L = L, the upper screen address is sent out from the MA0 to MA15 pins. When U / L = H, the lower screen address is sent out from the MA0 to MA15 pins. When U / L = H, the lower screen address is sent out from the MA0 to MA15 pins. In this case, however, the LA0 to LA4 outputs do not change. So it is impossible to set a row that extends from the upper screen to the lower screen. The cycle time of the U / L-signal is twice as long as that of the CYCLE-signal. The CYCLE-signal is L in the first half of the U / L-signal, and H in the second half of the U / L-signal. If the CPU accesses the display memory when CYCLE = L, you can rewrite the display memory without disturbing the display.

b) 1- Screen mode

When the T7779 is operating in LCD mode, the cycle time of the built–in address counter is twice that when the T7779 is operating in CRT mode. In 1–Screen mode (R_{18} –bit 7 = 0), the upper screen address is sent out from MA0 to MA15 pins during the cycle time of the U / L–signal. The CYCLE–signal is sent out using the same timing as in 2–Screen mode.

c) High Resolution mode

High Resolution mode is usually set (HR / LR = 1).

d) Low Resolution mode

In Low Resolution mode (HR / LR = 0), each horizontal dot is displayed twice. When the total of horizontal dots = 640 and the number of horizontal dots per character = 8, 80-characters are displayed in High Resolution mode and 40-characters are displayed in Low Resolution mode. When you change the High Resolution / Low Resolution mode setting, you must change not only the HR / LR pin but also the contents of the built-in registers to match 40-character display.

Memory Interface

If the CPU accesses the memory while the T7779 is accessing the memory, the display will be disturbed. There are two methods for rewriting the display memory without disturbing the display. One is to rewrite the display memory during the retrace period (DSPTMG = L). The other is to rewrite the display memory while CYCLE = L. A detailed explanation of the second case is shown below.

(1) Interface for CRT mode

The interface circuit must be constructed so that the CPU can access the memory when CYCLE = L.

When $f\phi$ = 16 MHz, address cycle time = 500 ns

(2) Interface for LCD 2-Screen mode

The interface circuit must be constructed so that the CPU can access the memory when CYCLE = L.

When f ϕ = 16 MHz, address cycle time = 500 ns

(3) Interface for LCD 1–Screen mode

The interface circuit must be constructed so that the CPU can access the memory when U / $\rm L$ = L.

When $f\phi = 16$ MHz, address cycle time = 1000 ns

Monitor Interface

(1) CRT (NTSC)

The resistance-mixing circuit generates a monochrome composite signal.

(2) LCD

You can connect the T7779 (directly or through a CMOS buffer) to various types of LCD module that are on the market, and make various settings, such as 1 or 2 screens, the number of data bus lines, the number of horizontal dots and the duty.

The relation between data transmission, the shift clock and latch pulse is as shown below. The shift clock frequency becomes low as the number of data lines increases. Hence it is useful for the low power system.

• Timing Chart (I) (HR / LR = 1: High Resolution mode)

(1) Internal clock (Q_1 / CLK = Q_1 , Q_2 / $\phi E = Q_2$)

b) Hor. dots per font = 6 (HSO = 1, HS1 = 0)

- c) Hor. dots per font = 7 (HSO = 0, HS1 = 1) $x_1 = \frac{5}{2} + \frac{9}{2} + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{5}{5} + \frac{9}{4} + \frac{5}{4} + \frac{1}{4} + \frac{1$
- d) Hor. dots per font = 8 (HSO = 1, HS1 = 1)

- (2) External clock (Q₁ / CLK = CLK, Q₂ / ϕ E = ϕ E)
- a) Hor. dots per font = 5 (HSO = 0, HS1 = 0) $CLK = \frac{4}{\phi E} = \frac{1}{2} \frac{1}{2} \frac{3}{4} \frac{4}{0} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{$

• Timing Chart (II) (HR / LR=0: Low Resolution mode)

(1) Internal clock (Q₁ / CLK=Q₁, Q₂ / ϕ E = Q₂)

b) Hor. dots per font = 6 (HSO = 1, HS1 = 0)

- fosc : Oscillator frequency
- $f_{OSC} = f \phi = 2 \cdot SCP$ (1-bit mode)
 - = 4-SCP (2-bit mode) = 8.SCP (4-bit mode)

T7779

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Supply Voltage	V _{DD} (Note)	-0.3 to 7.0	V
Input Voltage	V _{IN} (Note)	-0.3 to V _{DD} +0.3	V
Operating Temperature	T _{opr}	-20 to 75	°C
Storage Temperature	T _{stg}	-55 to 125	°C

Note: Referenced to V_{SS} = 0 V

Electrical Characteristics DC Characteristics Test Conditions (Unless otherwise noted, $V_{SS} = 0V$, $V_{DD} = 5.0 V \pm 10\%$, Ta = -20 to 75°C)

Iter	n	Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit	
Operating V	oltage	V _{DD}	_	—	4.5	5.0	5.5	V	_
Input	H _{Level}	V _{IH}	_	—	V _{DD} - 0.8		V _{DD}	V	(Note 1)
Voltage	L _{Level}	V _{IL}	_	—	0	-	0.8	V	(Note 1)
Input	put H Level VIH — —		_	2.2	_	V _{DD}	V	(Note 2)	
Voltage	L _{Level}	V _{IL}	-	—	0	_	0.8	V	(Note 2)
Output	H _{Level}	V _{OH}	_	—	V _{DD} - 0.3		V _{DD}	V	
Voltage	L _{Level}	V _{OL}	_	—	0	I	0.3	V	_
Output	H _{Level}	R _{OH}	_	V _{OUT} = V _{DD} – 0.5 V			400	Ω	_
Resistance	L _{Level}	R _{OL}	_	V _{OUT} = 0.5 V			400	Ω	_
Operating E	roquonev	fφ	_	—			18	MHz	(Note 3)
Operating Frequency		fCLK	_	_			4.0	MHz	(Note 4)
Current Consumption		I _{DD}	_	V _{DD} = 5.0 V	_	4.0	6.0	mA	(Note 5)

Note 1: Applied to EXT / INT, HS0, HS1, LD3 / DSC0, DSC1, TEST1

Note 2: Applied to inputs other than those marked Note 1:

Note 3: Applied to $Q_2 / \phi E$

Note 4: Applied to Q₁ / CLK

Note 5: LCD, High Resolution, 2–bit transfer, 8 dots / font $640 \times 104 \times 2$ screens, f ϕ = 9 MHz

AC Characteristics

• CRT / LCD = 1 (LCD mode), EXT / INT = 1 (Internal clock)

Item	Symbol	Test Conditions	Min	Max	Unit
Q ₀ Cycle Time	tQ0C	—	111	—	ns
Q ₁ Delay Time	t _{Q1D}			20	ns
Q ₂ Delay Time	t _{Q2D}			20	ns
CYCLE Delay Time	tCYD			20	ns
U / L Delay Time	t _{ULD}			20	ns
SCP Delay Time	t _{CPD}		_	10	ns

• CRT / LCD = 1 (LCD mode), EXT / INT = 0 (External clock)

Item	Symbol	Test Conditions	Min	Max	Unit
φE Cycle Time	tφ _C	—	55.5	_	ns
φE 1 Pulse Width	Ρ₩φΗ	—	7.75	—	ns
φE 0 Pulse Width	PWφL	—	7.75	—	ns
ϕE Rise and Fall Time	tφ _R , tφ _F	—	_	20	ns
CLK Rise and Fall Time	t _{CKR} , t _{CKF}	—	_	20	ns
CLK Set-up Time	tcks	—	80	—	ns
CLK Hold Time	tскн	—	10	—	ns
CYCLE Delay Time	tCYD	—	_	80	ns
U / L Delay Time	tULD	-	_	80	ns
SCP Delay Time	t _{CPD}	—	-	80	ns

• CRT / LCD = 1 (LCD mode)

Item	Symbol	Test Conditions	Min	Max	Unit
MCS Delay Time	t _{MSD}	—		80	ns
CE Delay Time	tCED	_	_	100	ns
LA Delay Time	tLAD	_	_	70	ns
MA Delay Time	tMAD	_	_	50	ns
Data Set-up Time	t _{dS}	f _{OSC} = 10MHz	200	_	ns
Data Hold Time	t _{dH}	f _{OSC} = 10MHz	0	_	ns

• CRT / LCD = 1 (LCD mode)

Item	Symbol	Test Conditions	Min	Max	Unit
Data Delay Time	t _{dD}	—	_	20	ns
LP Delay Time	t _{LPD}	—	-	20	ns
FP Delay Time	t _{FPD}	—	_	20	ns
FR Delay Time	t _{FRD}	-		20	ns

• CRT / LCD = 0 (CRT mode), EXT / INT = 1 (Internal clock)

Test Conditions (Unless Otherwise Noted, V_{SS} = 0 V, V_{DD} = 5.0 V ± 10%, Ta = -20 to 75°C)

Item	Symbol	Test Conditions	Min	Max	Unit
MCS Delay Time	t _{MSD}	—	_	80	ns
DSPTMG Delay Time	t _{DTD}	—	_	100	ns
CUDISP Delay Time	tCDD	—		100	ns
HSYNC Delay Time	t _{HSD}	—		80	ns
VSYNC Delay Time	t _{VSD}	—		100	ns
LA Delay Time	t _{LAD}	—		80	ns
MA Delay Time	t _{MAD}	—		100	ns
Data Set-up Time	t _{dS}	f _{OSC} = 10MHz	200		ns
Data Hold Time	t _{dH}	f _{OSC} = 10MHz	0		ns
CYCLE Delay Time	tCYD	_		20	ns
Data Delay Time	t _{dD}	_		110	ns

• CRT / LCD = 0 (CRT mode), EXT / INT = 0 (External clock)

Item	Symbol	Test Conditions	Min	Max	Unit
CLK Cycle Time	tckc	_	222	_	ns
CLK 1 Pulse Width	PWCKH	_	91	_	ns
CLK 0 Pulse Width	PWCKL	_	91	_	ns
CLK Rise and Fall Time	t _{CKR} , t _{CKF}	_	_	20	ns
MCS Delay Time	t _{MSD}	_	_	120	ns
DSPTMG Delay Time	t _{DTD}	_	_	140	ns
CUDISP Delay Time	tCDD	_	_	140	ns
HSYNC Delay Time	t _{HSD}	_	_	120	ns
VSYNC Delay Time	t _{VSD}	_	_	130	ns
LA Delay Time	t _{LAD}	_	_	110	ns
MA Delay Time	t _{MAD}	_	_	140	ns
Data Set-up Time	t _{dS}	f _{OSC} = 10 MHz	200	_	ns
Data Hold Time	t _{dH}	f _{OSC} = 10 MHz	0	_	ns
φE Cycle Time	tφ _C	_	55.5	_	ns
φE 1 Pulse Width	PWφH	_	7.75	_	ns
φE 0 Pulse Width	PWφL	_	7.75	_	ns
φE Rise and Fall Time	tφ _R , tφ _F	—	_	20	ns
CLK Delay Time	t _{CKD}	—	10	_	ns
Data Delay Time	t _{dD}	—	_	160	ns

• LPSTB timing

• $\overline{\text{ADF}}$, $\overline{\text{EXS}}$ timing

Item	Symbol	Test Conditions	Min	Му	Unit
LPSTB Minimum Pulse Width	Pulse Width PWLPH — 60		_	ns	
I PSTR Dicable Time	t _{LPD1}	_		20	ns
	t _{LPD2}			20	ns
MA Hold Time	t _{MAH}			50	ns
LA Hold Time	tLAH			50	ns
MA Set-up Time	t _{MAS}			60	ns
LA Set-up Time	tLAS			60	ns
EXS Set-up time	t _{ESS}		20	_	ns
EXS Hold Time	t _{ESH}	_	40	_	ns

• BUS timing

(1) Read sequence

(2) Write sequence

Test Conditions (Unless Otherwise Noted, $V_{SS} = 0 V$, $V_{DD} = 5.0 V \pm 10\%$, Ta = -20 to 75°C)

CPU read timing

Item	Symbol	Test Conditions	Min	Max	Unit
E Cycle Time	t _{EC}	—	500	_	ns
E 1 Pulse Width	PWEH	—	220	_	ns
E 0 Pulse Width	PWEL	—	210	_	ns
E Rise and Fall Time	t _{ER} , t _{EF}	—	-	25	ns
Address Set-up Time	t _{AS}	—	70	_	ns
Data Delay Time	t _{DD}	CL=50pF		180	ns
Data Hold Time	t _{DH}	—	10	_	ns
Address Hold Time	t _{AH}	_	10	_	ns
Data Access Time	t _{DA}	_	_	250	ns

CPU write timing

Item	Symbol	Test Conditions	Min	Max	Unit
E Cycle Time	t _{EC}	—	500	_	ns
E 1 Pulse Width	PWEH	_	220	_	ns
E 0 Pulse Width	PWEL	—	210	_	ns
E Rise and Fall Time	t _{ER} , t _{EF}	—	_	25	ns
Address Set-up Time	t _{AS}	—	70	_	ns
Data Set-up Time	t _{DS}	—	60	_	ns
Data Hold Time	t _{DH}	—	10	_	ns
Address Hold Time	t _{AH}	—	10	_	ns

T7779

System Construction

• CG ROM + attribute RAM

• Bit map RAM

• CG ROM (1-character skew)

• CG ROM (2-character skew)

Application Circuit ··· 640 × 400 (1 / 200 duty) LCD

An application circuit for an LCD is shown overleaf.

Item	Specification
Character Font	8 × 8 dots
Displayed Chars	80 columns × 50 rows = 4000 characters
Refresh Memory Access Method	Synchronous
	CPU T7779 CPU T7779
Address Map	0000 ROM (8K)
	2000 (CPU Program) RAM (8K)
	4000 (CPU Work)
	Attribute RAM (16K)
	8000
	Display RAM (16K)
	C000
	Open
	FFFE Control Register
	Data kegister
Skew	1 character

	LCD Specification
Dot Size	640 × 400
Duty	1/200
Frame Frequency	60 Hz
Dot Frequency	16 MHz
Character Font	8 × 8
Displayed Chars	80 × 50
Cursor Mode	Scan Line 0 to 7, Non-Blink

	T7779 Initial Data		
Reg. No.	Register Name	SYM.	Value (HEX.)
R ₀	Horizontal Total	Nht	52H
R ₁	Horizontal Displayed	Nhd	50H
R ₂	Horizontal Sync. Position	Nhsp	50H
R ₃	Sync. Width	Nvsw Nhsw	11H
R ₄	Vertical Total	N∨t	18H
R_5	Vertical Total Adjust	Nadj	00H
R ₆	Vertical Displayed	Nvd	FFH
R ₇	Vertical Sync. Position	Nvsp	FFH
R ₈	Interlace Mode and Skew	-	50H
R ₉	Max Scan Line Address	Nr	07H
R ₁₀	Cursor Start	Ncsr	00H
R ₁₁	Cursor End	Ncer	07H
R ₁₂	Start Address (H)		00H
R ₁₃	Start Address (L)		00H
R ₁₄	Cursor Address (H)		00H
R ₁₅	Cursor Address (L)		00H
R ₁₆	Light Pen (H)		_
R ₁₇	Light Pen (L)		_
R ₁₈	SCP Start Position	Nssp	80H
R ₁₉	SCP End Position	Nsep	50H
R ₂₀	Display Start Position	Ndsp	00H
R ₂₁	Display End Position	Ndep	50H
R ₂₂	Additional Address (H)	_	07H
R ₂₃	Additional Address (L)	_	D0H

Timing Chart

;	T7779 DEMO SET PROGRAM VER1.00				
;	SOURCE PROGRAM for TMPZ84C00P				
;		15-FEB1991			
;					
;	REGISTE	R NUMBER DEFINITION	ſ		
;					
CMD	EQU	OFFFEH	;COMMAND REG.		
DAT	EQU	OFFFEH	;DATA REG.		
ATRAM	EQU	4000H	;ATTRIBUTE RAM ADDRESS		
DPRAM	EQU	8000H	;DISPLAY RAM ADDRESS		
;	MAIN PR	OGRAM			
;					
	ORG	0000H			
START:	LD	SP, 3FFFH	;INIT STACPOINT		
	LD	HL, CMD	;HL < - COMMAND REG. ADDRESS		
	LD	D, 00H			
	LD	BC, TBL	;BC < - REGISTER DATA ADDRESS		
LOOP1:	LD	(HL), D	;SET REGISTER NO.		
	LD	A, (BC)			
	LD	(DAT), A	;SET REGISTER DATA		
	INC	BC	;INC REGISTER DATA ADDRESS		
	INC	D	;INC REGISTER NO.		
	LD	A, D			
	CP	18H	;LAST REGISTER ?		
	JP	NZ, LOOP1			
	LD	HL, ATRAM	;HL < - ATTRIBUTE RAM ADDRESS		
	LD	A, 80H	;ATTRIBUTE RAM END ADDRESS		
	LD	в, 40н	;CHREN = "H"		
LOOP2:	LD	(HL), B			
	INC	HL			
	CP	Н	;END ADDRESS ?		
	JP	NZ, LOOP2			
	LD	BC, 4000	;LOOP COUNT		
	LD	DE, DPRAM	;DE < - DISPLAY RAM ADDRESS		
	LD	HL, DISP	;HL < - DISPLAY DATA ADDRESS		
	LDIR		; BLOCK TRANS.		
	HALT		;END OF PROGRAM		

;

i			
;	REGISTE	IR DATA	
;			
TBL:	DEFB	52H, 50H, 50H, 11H, 18H, 00H, OFFH, OFFH, 50	н, 07н, 60н, 07н
	DEFB	ООН, ООН, ООН, ООН, ООН, ООН, 80Н, 50Н, ООН,	50H, 07H, 0D0H
;			
;	DISPLAY	Z DATA	
;			
DISP:	DEFB	" T7779 (CRT / LCD CONTROLL	ER) "
	DEFB	"	"
	DEFB	"1. GENERAL DESCRIPTION	"
	DEFB	"	"
	DEFB	" The T7779 is a controller LSI for a rast	er-scan-type CRT display "
	DEFB	п	"
	DEFB	" and large-scale dot matrix LCD. It can be	used in applications "
	DEFB	п	н
	DEFB	" ranging from small-scale character displa	y systems to large-scale "
	DEFB	п	п
	DEFB	" graphic display systems.	п
	DEFB	п	п
	DEFB	"2. FEATURES	п
	DEFB	п	'n
	DEFB	" a) Refresh memory address	: MA0-MA15 "
	DEFB	п	'n
	DEFB	" b) Line scanning address	: LAO-LA4 "
	DEFB	п	п
	DEFB	" c) Frame buffer capacity	: Max 64 KBytes (character)"
	DEFB	11	п
	DEFB	11	: Max 2 MBytes (graphic) "
	DEFB	11	п
	DEFB	" d) Number of characters per line: 1-255	п
	DEFB	II	п
DEFB		" e) Number of character rows: 1-255	п
	DEFB	II	п
	DEFB	" f) Scrolling, Paging	"
	DEFB	п	п
	DEFB	"g) Light pen	'n
	DEFB	п	"

DEFB	"	h) Horizontal dots per character according to font: 5, 6, 7, 8	"
DEFB	"		"
DEFB	"	i) Vertical dots per character according to font: 1 to 32	"
DEFB	"		"
DEFB	"	j) Data output: 1-bit output, 2-bit (odd / even) output, 4-bit out	put"
DEFB	"		"
DEFB	"	k) Various attribute functions: Underline Cursor ON / OFF	"
DEFB	"		"
DEFB	"	Underline Cursor Blink	"
DEFB	"		"
DEFB	"	Character ON / OFF	"
DEFB	"		"
DEFB	"	Character Normal / Inverse	"
DEFB	"		"
DEFB	"	Character Blink	"
DEFB	"		"
DEFB	"	Blink Frequency Change	"
DEFB	"		"
DEFB	"		"
DEFB	"	EN	D!!"

END

Package Dimensions

Weight : 1.6g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.