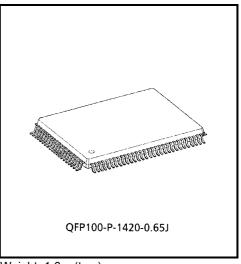
<u>TOSHIBA</u>

TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T6B20

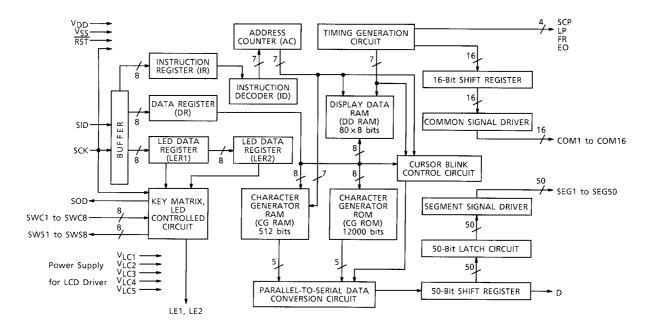
DOT MATRIX LCD CONTROLLER AND DRIVER LSI

The T6B20 is a dot matrix LCD controller that realizes low power and high speed using CMOS silicon gate technology. The T6B20 can display alphanumerics, kana and symbols, corresponding to serial data received from an MPU. The T6B20 has all the functions in one-chip to drive a dot matrix LCD. Therefore, the T6B20 can constitute a minimal LCD drive and control system.


The T6B20 can drive the display of up to 80 characters using an expansion driver (e.g. T6B23). The T6B20 has an 8×8 key matrix scan controll. The T6B20 can controll 16 LED drivers (a 2×8 matrix), having 2-enable pins for LED display.

Features

- Built-in controller for character-type LCD (character fonts: 5 × 7, 5 × 10)
- Direct interface with MPU (serial interface)
- Data transfer clock $: f_{osc} = 250 \text{ kHz Typ.}$
- Display data RAM : 8 × 8 bits
- Character generator ROM : 12000 bits
- Character generator RAM : 512 bits
- Built-in key matrix scan controller: 8 × 8 (64 keys)
- Built-in 2 × 8 LED controller (buffer not built-in)
- Built-in LCD drivers 50-output column driver 16-output row driver


٠	Duty factor selection (prog	grammable)
	1/8 duty cycle	: (Font: 5×7 dots + cursor) $\times 1$ line
	1/11 duty cycle	: (Font: $5 \times 10 \text{ dots} + \text{cursor}) \times 1 \text{ line}$
	1/16 duty cycle	: (Font: 5×7 dots + cursor) $\times 2$ lines

- Applications Display clear, Cursor home, Display ON/OFF, Cursor ON/OFF Character blink, Character shift, Display shift, Cursor shift
- Power supply $: 5 V \pm 10\%$
- Low power consumption
- CMOS, Si-gate process
- 100-pin Flat Plastic Package

Weight: 1.6 g (typ.)

Block Diagram

Pin Assignment

		SWS1	SWS 2	SWS3	SWS4	SWS5	SWS6	SWS7	SW58	SOD	SID	^V DD	SCK	RST	LE1	LE2	V _{LC5}	VLC4	VLC3	V _{LC2}	VLC1		
	1	100	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81		
SWC8	1		_						50		51	50			0,	00	05	0.1	ţ,	Ű.	Ŭ,	80	Vss
SWC7	2	()																			79	L
SWC6	3		-																			78	D
SWC5	4																					77	FR
SWC4	5																					76	SCP
SWC3	6																					75	LP
SWC2	7																					74	SEG1
SWC1	8																					73	SEG2
COM1	9																					72	\$EG3
	10																					71	SEG4
сомз	11																					70	SEG5
COM4	12																					69	SEG6
COM5	13									Т	6 E	2	0									68	SEG7
COM6	14																					67	SEG8
COM7	15									(T	OP 1	/IEW	/)									66	SEG9
COM8	16																					65	SEG10
сом9	17																					64	SEG11
COM10	18																					63	SEG12
COM11	19																					62	SEG13
COM12	20																					61	SEG14
COM13	21																					60	SEG15
COM14																						59	SEG16
COM15																							SEG17
COM16																							SEG18
	25																					56	SEG19
	26																						SEG20
	27																						SEG21
	28																						SEG22
	29																						SEG23
SEG45	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	SEG24
						-						-						i.			1		
		SEG44	SEG43	SEG42	SEG41	SEG40	SEG39	SEG38	SEG37	SEG36	SEG35	SEG34	SEG33	SEG32	SEG31	SEG30	SEG29	SEG28	SEG27	SEG26	SEG25		

Pin Functions

Symbol	Pin No.	Туре	Name and Function
SCK	89	Input	System Clock
SID	91	Input	Serial data input
SOD	92	Output	Serial data output
SWC1 to SWC8	1 to 8	Input	Key matrix inputs
SWS1 to SWS8	93 to 100	Output	Key matrix outputs
LP	75	Output	Latch Pulse : Latch pulse for the extension driver (e.g. T6B23)
SCP	76	Output	Shift Clock Pulse : Shift Clock Pulse for the extension driver (e.g. T6B23)
FR	77	Output	Frame signal : FR signal for the extension driver (e.g. T6B23)
D	78	Output	Data : Display data for the extension driver (e.g. T6B23)
EO	79	Output	Enable Output : Enable signal for the extension driver (e.g. T6B23)
COM1 to COM16	9 to 24	Output	Common : Row outputs When 1 / 8 duty cycle is selected, COM9 to COM16 are disabled. When 1 / 11 duty cycle is selected, COM12 to COM16 are disabled.
SEG1 to SEG50	25 to 74	Output	Segment : Column outputs.
V _{LC5}	85	Input	Power supply for LCD drive
V_{LC1} to V_{LC4}	81 to 84	Input	Power supply for LCD drive
V _{DD} , V _{SS}	90, 80	Input	Power supply and ground pins V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V
RST	88	Input	Reset : $\overline{RST} = L \rightarrow Reset state$
LE1, LE2	86, 87	Output	LED Enable outputs

Functional Description of Each Block

• Registers

The T6B20 has four 8-bit registers. The registers are the Instruction Register (IR), the Data Register (DR), and two LED control data registers (LER1, LER2).

The IR holds an instruction code, a DD RAM address data, or a CG RAM address data.

The DR temporarily holds the data that is to be written into the DD RAM or the CG RAM.

The data in DR are automatically written into the DD RAM or the CG RAM.

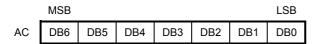
The LE1 and LE2 hold the data for controlling the LED.

The relation between the Register Select (RS1, RS2) signals and the selected operation is shown in Fig. 1.

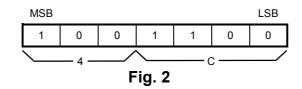
RS1	RS2	Operation
0	0	Write into IR
0	1	Write into DR
1	0	Write into LER1
1	1	Write into LER2

Fig. 1

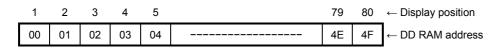
• Address Counter (AC)


The T6B20 has a 7-bit Address Counter. The Address Counter points to an address in DD RAM or CG RAM, or to the cursor position. The Set DD RAM Address or Set CG RAM Address instruction specifies which type of Address Counter contains. The Address Counter is automatically incremented (or decremented) after the data has been written into RAM.

• Display data RAM (DD RAM)


The display data RAM stores display data as 8-bit character codes.

Its capacity is 80 characters \times 8 bits. The relation between the DD RAM address and the display position is as shown below.


The DD RAM address corresponds to a HEX code as shown in Fig. 2.

Example: When DD RAM address = 4CH

 (1) The relation between the DD RAM address and the display position in 1-Line Display mode (N = 0)

a) Using one T6B20, the first ten characters are displayed as shown below.

_	1	2	3	4	5	6	7	8	9	10
	00	01	02	03	04	05	06	07	08	09

b) When a Display Shift operation is executed, the relation between the DD RAM address and the display position is as shown below.

	1	2	3	4	5	6	7	8	9	10
Left shift display	01	02	03	04	05	06	07	08	09	0A
	1	2	3	4	5	6	7	8	9	10
Right shift display	4F	00	01	02	03	04	05	06	07	08

(2) The relation between the DD RAM address and the display position in 2-Line Display mode (N = 1)

	1	2	3	4	39	40	← Display position
1st line	00	01	02	03	 26	27	\leftarrow DD RAM address
2nd line	40	41	42	43	 66	67	

Note: The DD RAM address of the 2nd line is not the next address after the last address on the 1st line.

a) Using one T6B20, the first 20 characters (10 characters × 2 lines) are displayed as shown below.

	1	2	3	4	5	6	7	8	9	10
1st line	00	01	02	03	04	05	06	07	08	09
2nd line	40	41	42	43	44	45	46	47	48	49

b) When a Display Shift operation is executed, the relation between the DD RAM address and the display position is as shown below.

	1	2	3	4	5	6	7	8	9	10
Left shift display	01	02	03	04	05	06	07	08	09	0A
Left shift display	41	42	43	44	45	46	47	48	49	4A
	1	2	3	4	5	6	7	8	9	10
Right shift display	27	00	01	02	03	04	05	06	07	08
Right Shift display	67	40	41	42	43	44	45	46	47	48

• Character generator ROM (CG ROM)

The character generator ROM is used to generate the 5×10 -dot character patterns (for 240 characters) from the 8-bit character codes. The relation between the character codes and character patterns is as shown overleaf.

The Relation Between Character Codes and Character Pattern

HIGHER 4 BITS LOWER 4 BITS	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
XXXX0000	CGRAM (0)	*****					•	.	*****					*** *** ***	Ū.	
XXXX0001	(1)	*****					***	****	23955							
XXXX0010	(2)	** ** ***		****]	***							
XXXX0011	(3)	•••		****											- 	::::
XXXX0100	(4)										•••	*****				
XXXX0101	(5)		•	***** ****								•**	•	***	- 	
XXXX0110	(6)							ار ب ^ا			*****]]	***		,	· ·
XXXX0111	(7)	••••	**	i.			****	.			*****		***** *** *	***	-	
XXXX1000	(0)		I.	1				••••			-		•••••		•••	·····
XXXX1001	(1)			**** ****				3		****	::::::::::::::::::::::::::::::::::::::	•			:	
XXXX1010	(2)			:: ::			••	*****			58799 8 8 8 8 8 8	****		.		
XXXX1011	(3)		2000	** ** **						••••	•••• •* •	-17]+ -*			*	
XXXX1100	(4)		•	***					•••••				***** ***	,		F
XXXX1101	(5)			*****				- - -					•*•	** ***		• •
XXXX1110	(6)									·		·]··;	*****	•••		
XXXX1111	(7)						:;	-			:::	• •	***** * *			

• Character generator RAM (CG RAM)

The character generator RAM is used to display the user's original character patterns.

 $(5\times7~{\rm dots}\times8~{\rm types}~{\rm or}~5\times10~{\rm dots}\times4~{\rm types})$

The relation between the character codes and the CG RAM address and character patterns is as shown in Fig. 3 and Fig. 4.

(1) For 5 × 7-dot character patterns

						CO		S				RAN			Cŀ			TEF				NS	
7	6	6	5	4	 3	2	1	0	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
0	C	D	0	0	*	0	0	0	0	0	0	0 0 0 1	0 0 1 1 0 0	0 1 0 1 0 1	*	*	*	1 1 1 1	1 0 0 1 0 0	0 0 1 0 0	1 0 1 0 0	0 1 1 0 1	Character Pattern Example (1)
												1 1	1 1	0 1	*	*	*	1	1 0	1 0	1 0	0 0	\leftarrow Cursor Position
0	C	0	0	0	*	0	0	1	0	0	1	0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	*	*	*		1 0 1 0 1 0	1 0 1 0 0 1 0	1 0 1 0 0 1 0	1 0 0 1 1 0 0	Character Pattern Example (2) ← Cursor Position
				_	 							0	0 0	0	*	*	*	1	1	1	1 0	1 0	
0	C)	0	0	 *	1	1	1	1	1	1	0 1 1 1	1 0 0 1	1 0 1 0 1	*	*	*	0 0 0 0 0	000000) 1 1 1 1 0	0 0 0 0 0	0 0 0 0 0	Fig. 3 * : Invalid

Note 1: Character code bit 0 to bit 2 correspond to CG RAM address bit 3 to bit 5.

Note 2: Bit 0 to bit 2 of the CG RAM address indicate the row within the character bit map. The 8th row (the bottom row) corresponds to the cursor position on the LCD display. Normally the 8th row should be blank (all 0s), otherwise the lowest line of the character will be obscured when used with the cursor.

Note 3: Character pattern line positions correspond to CG RAM data bit 0 to bit 4. CG RAM data bit 5 to bit 7 is not used for display; the data can be used for general RAM data.

Note 4: If bit 4 to bit 7 are all 0, a CG RAM character is indicated. The value of bit 3 does not matter. Character codes 00H and 08H select the same character.

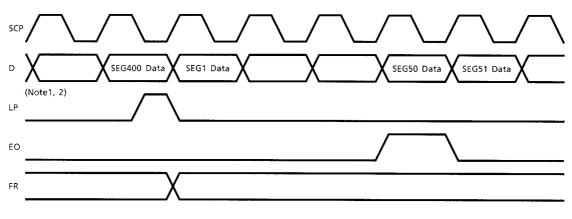
Note 5: 1: ON, 0: OFF

(2) For 5 × 10-dot character patterns

CHARACTER CODES	CG	RAM	CHARACTER PATTERNS]
(DD RAM DATA)		DRESS	(CG RAM DATA)	
7 6 5 4 3 2 1 0	543	2 1 0	7 6 5 4 3 2 1 0	
	0		* * * 0 0 0 1 0	
	0	0 0 1	0 0 0 0 0	
	0	0 1 0	0 0 1 1 0	
	0	0 1 1	0 0 0 1 0	Character Pattern Example
	0	1 0 0	0 0 0 1 0	
0 0 0 0 * 0 0 *	0 0 0	1 0 1	0 0 0 1 0	
	1			
	0	1 1 0	0 0 0 1 0	
	0	1 1 1	0 0 0 1 0	
	1	0 0 0	10010	
	j 1	0 0 1	0 1 1 0 0	
	1	0 1 0	* * * 0 0 0 0 0	← Cursor Position
[1	0 1 1	* * * ! * * * * *	
	1	1 0 0	1 I I	
		1 0 1		
		1 1 0		
		1 1 1	* * * * * * * *	
	0	0 0 0	* * *!	
	0	0 0 1		
	0	0 1 0		
	1	0 0 0		
0 0 0 0 * 1 1 *	1 1 1	0 0 1		
	1	0 1 0	* * *	
	1	0 1 1	* * * * * * * * *	
	1	1 0 0	4 4	Fig. 4
	1	1 0 1		
]		Í		
		1 1 0		ч. I. I
	<u> 1</u>	1 1 1	* * * * * * * *	* : Invalid

Note 1: Character code bit 1 and bit 2 correspond to CG RAM address bit 4 and bit 5.

- Note 2: Bit 0 to bit 3 of the CG RAM address indicate the row within the character bit map. The 11th row corresponds to the cursor position on the LCD display. Normally the 11th row should be blank (all 0s), otherwise the lowest line of the character will be obscured when used with the cursor. Lines 12 to 16 are not used for display data and can be used for general RAM data.
- Note 3: If bit 4 to bit 7 are all 0, a CG RAM character is indicated. The values of bits 0 and 3 do not matter. Character codes 00H, 01H, 08H and 09H all select the same character.
- Note 4: 1: ON, 0: OFF


• Timing generation circuit

The timing generation circuit generates timing signals for operating internal circuits such as the DD RAM, CG ROM and CG RAM.

The circuit is designed so that access by the MPU does not disturb the display. When data is written to the DD RAM, only the portion of RAM being written to is affected.

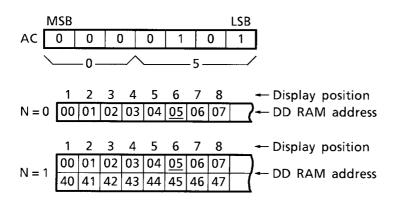
This circuit also generates timing signals which operate the extension driver (e.g. T6B23).

The relation between the timing signals in 1–Line Display mode is as shown below.

Note 1: SEG1 to SEG50 Data for the T6B20

SEG51 to SEG400 Data for the extension driver

Note 2: In 2-Line Display mode, "SEG400 Data" changes to "SEG200 Data".


• LCD driver circuit

The LCD drive circuit consists of 16 row drivers and 50 column drivers.

When the character font type and the number of lines have been selected by the appropriate command, the valid row drivers automatically output drive waveforms, and the other row drivers output OFF waveforms.

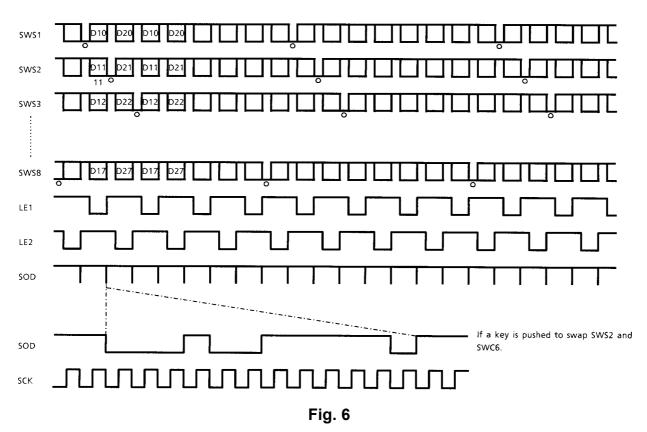
• Cursor / blink display control circuit

This circuit generates the cursor or blink display. The cursor or blink is displayed in the digit which corresponds to the DD RAM address set in the Address Counter. When the Address Counter is set to 05H, the cursor is displayed as shown below.

Note: The cursor or blink is also displayed when a CG RAM address is set in the Address Counter. In this case the cursor or blink is displayed regardless of the DD RAM address.

• Reset

When $\overline{\text{RST}}$ = L, the T6B20 is reset and commands (1) to (4) are automatically executed. If a Hand Reset is not used, the MPU should execute commands (1) to (4).


(1) Display Clear

BL = 1 : The blink is displayed by switching between all dots ON and the displayed characters.
the displayed characters.
N = 0 : 1-line display
$F = 0$: 5×7 -dot character font
I / D = 1 : +1
S = 0 : No Shift
D = 0 : Display OFF
C = 0 : Cursor OFF
B = 0 : Blink OFF

• Key matrix, LED control circuit

This control circuit generates key scan signals and LED control signals. The key data input to SWC1 to SWC8 are converted to serial data and output from SOD. SWS1 to SWS8 output the key scan signals and the LED data signals. LE1 to LE2 output the LED Enable signals.

The T6B20 controls a 2×8 LED matrix using a LED data signal and an Enable signal. The key scan signals and the LED control signals are shown in Fig. 6.

Note: D: LED control signals

* D10 to D17: The data on each bit of the LER1

** D20 to D27: The data on each bit of the LER2

°: Key scan signal

The structure of the $8\times8-key$ scan matrix and the 2×8 LED matrix is shown in Fig. 7.

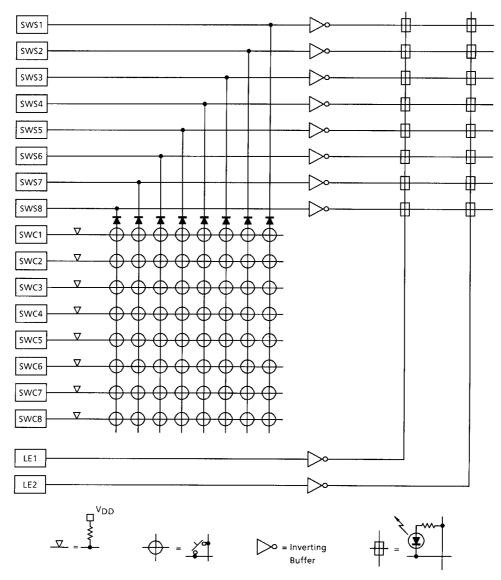
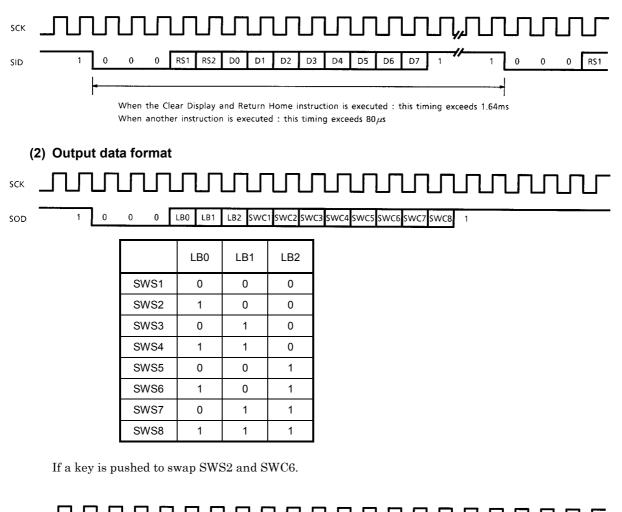
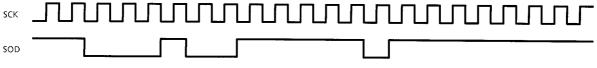




Fig. 7

• Interface to MPU

(1) Input data format

Instruction

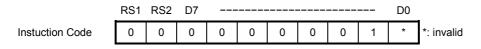
The MPU can directly control four registers. While the T6B20 is executing an instruction, it cannot execute any other command.

If a command is being executed repeatedly, a wait time must be allowed between successive commands.

Description of Instructions

Instruction					Сс	ode					Description	Working Time
Instruction	RS1	RS2	D7	D6	D5	D4	D3	D2	D1	D0	Description	f _{osc} = 250 kHz (Max)
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears all display data and sets the DD RAM address to 00H.	1.64 ms
Return Home	0	0	0	0	0	0	0	0	1	*	Sets the DD RAM address 00H and returns the display to home position. The contents of the DD RAM do not change.	1.64 ms
Set Entry Mode	0	0	0	0	0	0	0	1	I/D	S	Sets cursor shift direction and display shift. These operations are executed, when data is written.	40 µs
Display ON / OFF Control	0	0	0	0	0	0	1	D	С	В	Sets ON / OFF for entire display (D), cursor ON / OFF (C), cursor position blink (B).	40 µs
Cursor / Display shift	0	0	0	0	0	1	s/c	R/L	*	*	Shifts cursor and display without changing DD RAM contents.	40 µs
Set Function	0	0	0	0	1	BL	N	F	Т	*	Sets blink mode (BL), sets number of display lines (N), character font (F), and test mode (T).	40 µs
Set the CG RAM Address	0	0	0	1		C	G RAM	Addre	SS		Sets the CG RAM Address.	40 µs
Set the DD RAM Address	0	0	1			DD R	AM Ac	ldress			Sets the DD RAM Address.	40 µs
Write Data to the CG RAM or DD RAM	0	1			Write Data						Writes data into the CG RAM or DD RAM.	46 µs
Write LED Data (1)	1	0				Write	e Data				Writes data into the LED data register (LER1)	0 µs
Write LED Data (2)	1	1				Write	e Data				Writes data into the LED data register (LER2)	0 µs

Instruction	Code										– Description f _{os}			
Instruction	RS1	RS2	D7	D6	D5	D4	D3	D2	D1	D0	Description	f _{osc} = 250 kHz (Max)		
_	I / D = S = 1 S / C S / C R / L :	= 0 : E = 1 : E = 0 : C = 1 : S = 0 : S 1 : E 0 : C = 1 : S = 0 : S 1 : E 5 : E	ncrema Decrem Display Display Display Cursor Shift to Display P-Line I-Line 5 × 10 (5 × 7 do Enable Cancel	Shift Shift Shift Shift Blink Blink displa dots ots Test M	ght ft ON (al ON (cł y y Mode			racter	revers	e imag	e)			

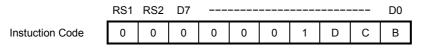

*: invalid

• Clear Display

	RS1	RS2	D7							D0
Instuction Code	0	0	0	0	0	0	0	0	0	1

When the T6B20 executes this instruction, code 20H (code 20H must be the "Space code") is written to every address in the DD RAM. This command resets the DD RAM address in the Address Counter. The display is inhibited and the cursor or blink is moved to the left of the display. (In 2–Line Display mode, the cursor moves to the left of 1st line of the display.) The I / D of Entry mode is set to 0. The S of Entry mode does not change.

Return Home

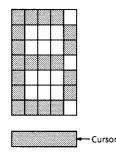

The DD RAM address in the Address Counter is reset by this instruction, and the display shift is cancelled (this is known as returning to the home position). The contents of the DD RAM do not change. The cursor or blink moves to the extreme left of the display. (In 2–Line Display mode, the cursor moves to the extreme left of the 1st line of the display.)

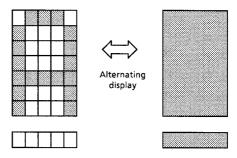
<u>TOSHIBA</u>

• Set Entry mode

- I / D: The Address Counter is incremented (I / D = 1) or decremented (I / D = 0) after the data has been written to or read from DD RAM.
 - The same is true when date is written to or read from CG RAM.
- S : If S = 1, the entire display is shifted left (I / D = 1) or right (I / D = 0) when data is written to the DD RAM. (The cursor position does not move) If S = 0, the display is not shifted.
- Display ON / OFF control

- C : C = 1, cursor display is ON; C = 0, cursor display is OFF. 5×7 -dot character font : cursor display uses 5 dots on the 8th line 5×10 -dot character font : cursor display uses 5 dots on the 11th line
- B : B = 1, character blink is ON (same position of cursor position); B = 0, character blink is OFF. Selectable blink: All dots on

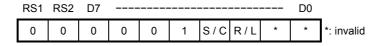

Character-character reverse image


 $\ensuremath{\mathsf{Cursor}}$ and blink can operate at same time.

Blink period: Font 5×7 -dot, fosc = 250kHz (1 / 250 k) $\times 5 \times 80 \times 8 \times 32 = 409.6$ (ms)

Font 5×10 -dot, fosc = 250 kHz

 $(1 / 250 \text{ k}) \times 5 \times 80 \times 11 \times 32 = 563.2 \text{ (ms)}$



(1) Cursor display example (5 × 7dots)

(2) Blink display example (BL = 1)

• Cursor Display Shift

Instuction Code 0

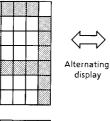
When this instruction is executed, the cursor or display is shifted to the right or left without display data being written or read.

In 2-Line Display mode, the cursor is shifted from the 40th digit of the 1st line to the 1st digit of the 2nd line.

S/C	R/L	Functions	Address Counter (AC)
0	0	Shift the cursor to the left.	AC = AC - 1
0	1	Shift the cursor to the right.	AC = AC + 1
1	0	Shift the whole display to the left. The cursor follows the display shift direction.	AC = AC
1	1	Shift the whole display to the right. The cursor follows the display shift direction.	AC = AC

When S / C = 1, the contents of the Address Counter do not change.

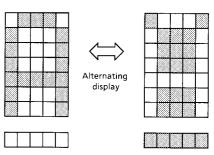
Set Function


	RS1	RS2	D7						D0		
Instuction Code	0	0	0	0	1	BL	Ν	F	Т	*	*: invalid

BL : $BL = 1$,	Blink ON (All dots ON)

	BL = 0,	Blink ON (character reverse image-character)
Ν	: N = 0,	1–line display mode
	N = 1,	2–line display mode
ъ		

$\mathbf{F} \vdots \mathbf{F} = 0,$	5 × 7–dot character font
$\mathbf{F} = 1,$	5×10 -dot character font


N	F	Display Lines	Character Font	DUTY
0	0	1	5 × 7 dots	1/8
0	1	1	5 × 10 dots	1 / 11
1	*	2	5 × 7 dots	1 / 16

(1) BL = 1

(2) BL = 0

T : T = 1, Test mode Executing this instruction, sets T = 0.

Note: Execute this instruction first in a program before executing any other instructions.

After this instruction has been used once, it cannot be used again, except to change the Blink mode setting.

<u>TOSHIBA</u>

Set CG RAM Address

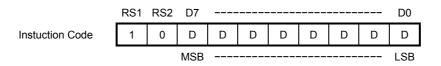
	RS1	RS2	D7							D0
Instuction Code	0	0	0	1	А	А	А	А	А	А

This instruction writes the CG RAM address data (e.g. AAAAAA (bin)) into the Address Counter.

Set DD RAM Address

This instruction writes the DD RAM address data (e.g. AAAAAAA (bin)) into the Address Counter.

• Write Data to DD RAM or CG RAM


	RS1	RS2	D7							D0
Instuction Code	0	1	D	D	D	D	D	D	D	D

This instruction writes 8–bit data (e.g. DDDDDDDD (bin)) to DD RAM or CG RAM.

The previous instruction (Set DD RAM or CG RAM Address) determines whether the data will be written to DD RAM or CG RAM.

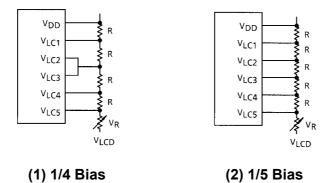
Before this instruction is executed, the Set DD RAM or CG RAM Address instruction must be executed. After the data has been written, the address is automatically incremented or decremented by 1.

• Write LED data (1)

This instruction writes 8–bit data (e.g. DDDDDDDD (bin)) to LER1 (LED Data register 1). This data controls eight LEDs using outputs SWS1 to SWS8 and LE1.

• Write LED data (2)

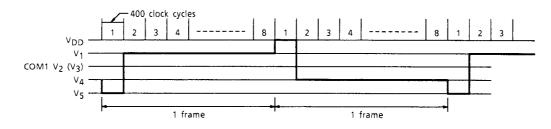
	RS1	RS2	D7							D0
Instuction Code	1	1	0	D	D	D	D	D	D	D
			MSB							LSB


This instruction writes 8–bit data (e.g. DDDDDDDD (bin)) to LER2 (LED Data register 2). This data controls eight LEDs using outputs SWS1 to SWS8 and LE2.

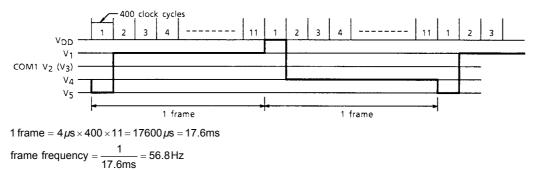
Power Supply for LCD Drive

Various voltage levels must be applied to the T6B20's pins V_{LC1} to V_{LC5} to obtain the LCD drive waveforms. The voltage levels vary according to the duty factor. The following table shows the relation between the two.

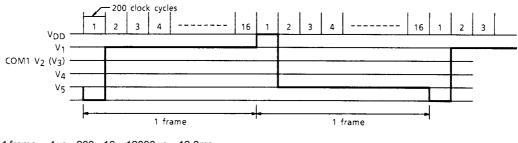
Duty Factor	1 / 8, 1 / 11	1 / 16
Power Bias Supply	$\frac{1}{4}$	<u>1</u> 5
V _{LC1}	V _{DD} – 1 / 4V _{LCD}	V _{DD} – 1 / 5V _{LCD}
V _{LC2}	V _{DD} – 1 / 2V _{LCD}	V _{DD} – 2 / 5V _{LCD}
V _{LC3}	V _{DD} – 1 / 2V _{LCD}	V _{DD} – 3 / 5V _{LCD}
V _{LC4}	V _{DD} – 3 / 4V _{LCD}	V _{DD} – 4 / 5V _{LCD}
V _{LC5}	V _{DD} – V _{LCD}	V _{DD} – V _{LCD}

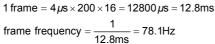

 $V_{LCD} = V_{DD} - V_{LC5}$

The Relation Between Oscillation Frequency and LCD Frame Frequency


LCD frame frequency example ($f_{OSC} = 250 \text{ kHz}$)

(1) 1 / 8 duty cycle




1 frame = 4μ s × 400 × 8 = 12800 μ s = 12.8ms frame frequency = $\frac{1}{12.8ms}$ = 78.1Hz

(2) 1 / 11 duty cycle

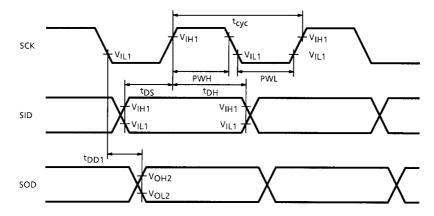
(3) 1 / 16 duty cycle

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit
Power Supply Voltage (1)	V _{DD}	-0.3 to 7.0	V
Power Supply Voltage (2)	V_{LC1} to V_{LC5}	V _{DD} - 13.5 to V _{DD} + 0.3	V
Input Voltage	V _{IN}	-0.3 to V _{DD} + 0.3	V
Operating Temperature	T _{opr}	-20 to 75	°C
Storage Temperature	T _{stg}	-55 to 125	°C

Note 1: All voltage values are referenced to V_{SS} = 0 V.

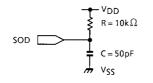
Note 2: Ensure that the following condition is always maintained.


 $\mathsf{V}_{\mathsf{D}\mathsf{D}} \geq \mathsf{V}_{\mathsf{L}\mathsf{C}1} \geq \mathsf{V}_{\mathsf{L}\mathsf{C}2} \geq \mathsf{V}_{\mathsf{L}\mathsf{C}3} \geq \mathsf{V}_{\mathsf{L}\mathsf{C}4} \geq \mathsf{V}_{\mathsf{L}\mathsf{C}5}$

Electrical Characteristics DC Characteristics Test Conditions (Unless Otherwise Noted, $V_{DD} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, Ta = -20 to 75°C)

Iten	n	Symbol	Test Cir- cuit	Test Conditions	Min	Тур.	Max	Unit	Pin Name
Operating V	perating Voltage (1) V _{DD} — —		4.5	_	5.5	V	_		
Operating V	Operating Voltage (2) V_{LCD} V_{LCD} V_{LCD}		3.0	_	11.0	V	_		
Input L Level		V _{IH1}	_	—	V _{DD} -1.0		V _{DD}	V	<u>SCK</u> , SID
Voltage (1)	H Level	V _{IL1}	—	_	0		1.0	V	RST
Hysterisis V	oltage	V _H	_	_	_	0.7	_	V	S <u>CK</u> , SID RST
Input	L Level	V _{IH2}	_	_	V _{DD} -1.2	_	V _{DD}	V	SWC1 to
Voltage (2)	H Level	V _{IL2}	_	_	0	_	1.9	V	SWC8
L Level		V _{OH1}	_	I _{OH} = −0.625 mA	V _{DD} -0.3	_	_	V	D, SCP
Voltage (1)	H Level	V _{OL1}	_	I _{OL} = 0.625 mA	_		0.3	V	LP, EO, FR
L Level		V _{OH2}	_	I _{OH} = −1.6 mA	2.4		_	V	
Output Voltage (2)	H Level	V _{OL2}	_	I _{OH} = −250 μA	V _{DD} -0.8	_	_	V	SOD
	II Level	VOL2	_	I _{OL} = 2.0 mA	_	_	0.4	v	
Output	L Level	V _{OH3}	_	I _{OH} = −250 μA	V _{DD} -0.8	_	_	V	SWS1 to SWS8
Voltage (3) H Level		V _{OL3}	_	I _{OL} = 2.0 mA	_	_	0.4	V	LE1, LE2
Row Output Resistance		RCOM	_	I _d = ±50 μA	_	_	20	kΩ	COM1 to 16
Column Output RSEG RSEG		RSEG	_	I _d = ±50 μA	_	_	30	kΩ	SEG1 to 50
Input Leakage Current		IIL	_	V _{IN} = 0 to V _{DD}	_	_	1	μA	SCK, SID
Power Supply Current		I _{DD}	_	All Outputs Open	_	_	800	μA	VDD

AC Characteristics

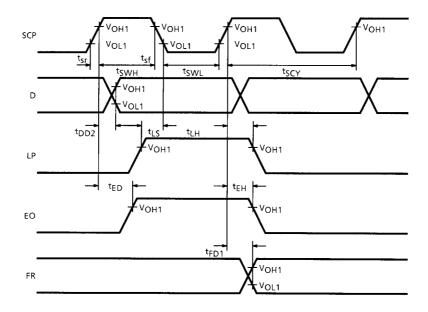

• Serial interface

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 75°C)

Item	Symbol	Min	Тур.	Max	Unit
SCK Cycle Time	t _{cyc}	2000	4000	8000	ns
SCK High Width	PWH	$\frac{t_{cyc}}{2}$ - 100	_	_	ns
SCK Low Width	PWL	$\frac{t_{cyc}}{2}$ - 100	_	_	ns
Data Set-up Time to SCK	t _{DS}	50	_	—	ns
Data Hold Time form SCK	t _{DH}	120	_	_	ns
Data Delay Time form SCK	t _{DD1}	_	_	300	ns

Note: AC Testing load circuit for SOD

• Power-on sequence



Test Conditions (V_{SS} = 0 V, Ta = -20 to 75° C)

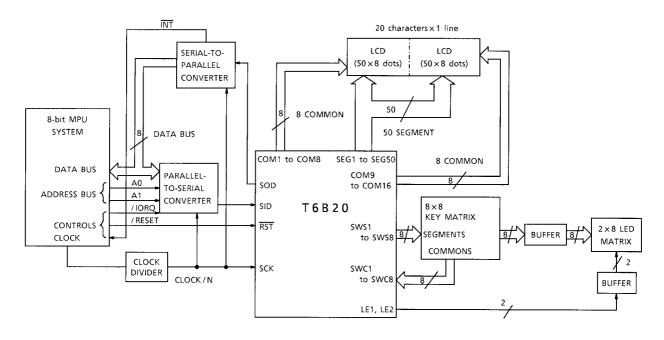
Item	Symbol	Min	Тур.	Max	Unit
Command Disable Time	t _{CD}			15	ms

• Expansion driver interface

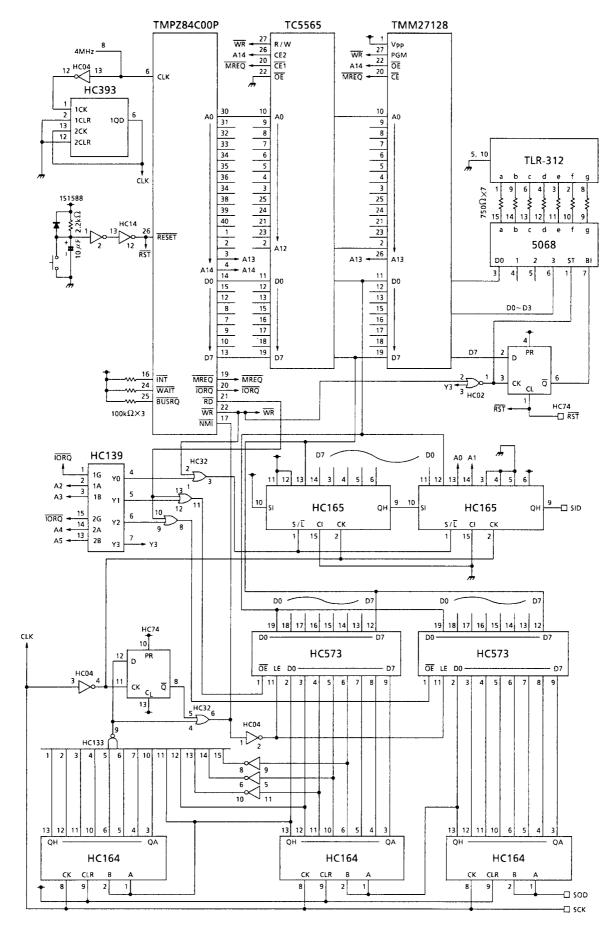
(e.g. T6B23)

Test Conditions (Unless Otherwise Noted, V_{DD} = 5.0 V ± 10%, V_{SS} = 0 V, Ta = -20 to 75°C)

Item	Symbol	Min	Max	Unit
SCP Cycle Time	tscy	2000	_	ns
SCP Pulse Width	tswh, L	800		ns
SCP Rise and Fall Time	t _{sr} , t _{sf}	—	100	ns
Data Delay from SCP	t _{DD2}	_	100	ns
LP Set-up Time SCP	t _{LS}	-120	0	ns
LP Hold Time from SCP	t _{LH}	-100	0	ns
EO Delay Time from SCP	t _{ED}	_	100	ns
EO Hold Time from SCP	t _{EH}	-100	0	ns
FR Delay Time from SCP	t _{FD1}	-100	100	ns


Note: AC testing load circuit for interface timing

Test Point O


Ļ ,

C = 50pF (including wiring capacitance)


Application Circuit

Application-A

Application-B

Package Dimensions

Weight : 1.6g (Typ.)

RESTRICTIONS ON PRODUCT USE

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.