MOS INTEGRATED CIRCUIT

PRELIMINARY DATA

1024 x 4 BIT STATIC RAM

- SINGLE +5V SUPPLY
- IDENTICAL CYCLE AND ACCESS TIMES
- COMPLETELY STATIC MEMORY-NO CLOCK OR TIMING STROBE REQUIRED
- DIRECTLY TTL COMPATIBLE: ALL INPUTS AND OUTPUTS
- COMMON DATA INPUT AND OUTPUT USING THREE-STATE OUTPUTS
- HIGH DENSITY 18 PIN PACKAGE

M2114	M2114-2	M2114-3	M2114	M2114L2	M2114L3	M2114L
Max. Access Time (ns)	200	300	450	200	300	450
Max. Current (mA)	100	100	100	70	70	70

The M2114 is a 4096-bit static Random Access Memory organized as 1024 words by 4-bits using a high performance MOS technology. It uses fully DC stable (static) circuitry throughout, in both the array and the decoding, therefore it requires no clocks or refreshing to operate. Data access is particularly simple since address setup times are not required. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided. The M2114 is designed for memory applications where high performance and high reliability, low cost, large bit storage, and simple interfacing are important design objectives. The M2114 is placed in an 18-pin package for the highest possible density. It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. A separate Chip Select (CS) lead allows easy selection of an individual package when outputs are or-tied.

ABSOLUTE MAXIMUM RATINGS*

V _i	Voltage on any pin with respect to ground	3.5 to +7	v
Ptot	Total power dissipation	1	w
lout	D.C. output current	5	mΑ
Tamb	Ambient temperature under bias	-10 to 80	°C
T _{stg}	Storage temperature range	-65 to 150	°C

* Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING	NUMBERS:	M2114
		M2114-2
		M2114-3
		M2144L
		M2114L2
		M2114L3
		add suffix E1 for frit-seal ceramic DIP or B1 for plastic DIP

MECHANICAL DATA (dimensions in mm)

Dual in-line plastic package

PIN CONNECTIONS

LOGIC DIAGRAM

PIN NAMES

A0-A9	ADDRESS INPUTS	VCC POWER (+5V)
WE	WRITE ENABLE	GND GROUND
CS	CHIP SELECT	
1/01-1/04	DATA INPUT/OUTPUT	

BLOCK DIAGRAM

 $(T_{amb} = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%$, unless otherwise noted)

Parameter		Test conditions	2114-2, 2114-3, 2114			2114L2,2114L3,2114L			
			Min.	Typ. ⁽¹⁾	Max.	Min.	Тур.(1)	Max.	Unit
1_1	Input Load Current (All Input Pins)	V _I = 0 to 5.25V			10			10	μA
I'LO	I/O Leakage Current	\overline{CS} = 2.4V, V _{1/O} = 0.4V to V _{CC}			10			10	μA
'ccı	Power Supply Current	$V_1 = 5.25V, I_{1/O} = 0 \text{ mA}, T_{amb} = 25^{\circ}C$		80	95			65	mA
Icc2	Power Supply Current	$V_1 = 5.25V, I_{1/O} = 0 \text{ mA}, T_{amb} = 0^{\circ}C$			100			70	mΑ
VIL	Input Low Voltage		-0.5		0.8	-0.5		0.8	V
VIH	Input High Voltage		2.0		6.0	2.0		6.0	V
TOL	Output Low Current	V _{OL} = 0.4V	2.1	6.0		2.1	6.0		mΑ
Тон	Output High Current	V _{OH} = 2.4V	-1.0	-1.4		-1.0	-1.4		mΑ
los ⁽²⁾	Out, Short Circuit Current				40			40	mA

M 2114

DYNAMIC ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%$, unless otherwise noted)

	Parameter		2114L2	2114-3,2114L3		2114, 2114L		
			Max.	Min.	Max.	Min.	Max.	Unit
READ	CYCLE ⁽³⁾							
tRC	Read Cycle Time	200		300		450		ns
tA	Access Time		200		300		450	ns
tco	Chip Selection to Output Valid		70		100		120	ns
tcx	Chip Selection to Output Active	20		20		20		ns
totd	Output 3-state from Deselection		60		80		100	ns
^t OHA	Output Hold from Address Change	50		50		50		ns
WRITE	E CYCLE ⁽⁴⁾							
twc	Write Cycle Time	200		300		450		ns
tw	Write Time	120		150		200		ns
twR	Write Release Time	0		0		0		ns
totw	Output 3-state from Write		60		80		100	ns
tow	Data to Write Time Overlap	120		150		200		ns
^t DH	Data Hold From Write Time	0		0		0		ns

CAPACITANCES⁽⁵⁾ ($T_{amb} = 25^{\circ}C$, f = 1.0 MHz)

Parameter		Test conditions		Linit		
	i diameter		Min.	Тур.	Max.	
C1/0	Input/Output Capacitance	V _{1/O} = 0V			5	pF
C,	Input Capacitance	V ₁ = 0V			5	pF

Notes: 1. Typical values are for T_{amb}= 25°C and V_{CC}= 5.0V. 2. Duration not to exceed 30 seconds.

- Duration not to exceed so seconds.
 A Read occurs during the overlap of a low CS and a high WE.
 A Write occurs during the overlap of a low CS and a low WE. tw is measured from the latter of CS or WE going low to the earlier of CS or WE going high.
 This parameter is periodically sampled and not 100% tested.

A.C. TEST CONDITIONS

Input Pulse Levels for M2114 = 0.8V to 2.4V Input Rise and Fall Times = 10 ns Input and Output Timing Levels = 1.5V Output Load = 1 TTL Gate and $C_L = 100 \text{ pF}$

WAVEFORMS

- Notes: 1. WE is high for a Read Cycle. 2. If the CS low transition occurs simultaneously with the WE low transition, the output buffers remain in a high impedance state. 3. WE must be high during all address transitions.