

2 x 8 CROSSPOINT MATRIX

- VERY LOW ON RESISTANCE
- HIGH CROSS-TALK AND OFF-STATE ISOLA-TION
- SERIAL SWITCH ADDRESSING, μ-PROCES-SOR COMPATIBLE

DESCRIPTION

The M089 is a 2 x 8 crosspoint matrix consisting of 16 N-channel MOS transistors.

The device has been specially designed to provide switches with low cross-talk, high off-state isolation (both better than - 90dB) and low on-resistance.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{DD}	Supply Voltage	- 0.5 to 17	V	
V ₁	Input Voltage Pins 4, 5, 12, 13	- 0.5 to 17	V	
V _{IN} -V _{OUT}	Differential Voltage Across any Disconnected Switch	10	V	
Ptot	Total Power Dissipation	640	mW	
Top	Operating Temperature Range : for Plastic for Ceramic	0 to 70 - 40 to 70	°C °C	
T _{stq}	Storage Temperature Range	- 65 to 150	°C	

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the opera-tional sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The M089 is capable of forming any combination of switch conditions in an 8 x 2 matrix. Each switch is individually set and a latch maintains it in its set condition

The switch address and control bits are loaded serially into an internal shift register (5 bits), when inputs E_1 , and E_2 are low. The address bits consist of :3 input selection bits $(X_0 \cdot X_2)$ and a single output selection bit (Y_0) . A fifth (control) bit (D) defines whether the chosen switch is to be opened or closed.

D	Y ₀	X ₂	X ₁	X ₀
	14000 OL:4	D: D	ia Allanadia	

M089 Shift Register Bit Allocation

Data bits are clocked into the shift register on the high to low transition of the clock input (CP). If more than 5 clock transmission are applied during loading of the shift register the last 5 data bits are loaded into it. The status of the switch addressed changes

ENABLE INPUTS TRUTH TABLE

Ē,	Ē	Function		
<u>-1</u>	E2	Data Load		
L	L			
	L	Addressed Switch		
L	J	Changed		

DATA BIT TRUTH TABLE

Data	Switch Status after Enable Transition
L	Disconnect
Н	Connect

on the low to high transition of one or both enable inputs.

DATA BITS TRUTH TABLE FOR SWITCH SELECTION

	O ₁ Y ₀ X ₂ X ₁ X ₀	02	O ₃	04	O ₅	06	07	Ο8
IN A	1111	1011	1101	1001	1110	1010	1100	1000
IN B	0111	0011	0101	0001	0110	0010	0100	0000

For example to address the switch connecting IN A to O₅ the shift register must be loaded with the code:

	D Y ₀ X ₂ X ₁ X ₀
to Connect	11110
to Disconnect	01110

ELECTRICAL CHARACTERISTICS ($T_{amb} = 0$ to $70^{\circ}C$ for M089 B1; -40 to $70^{\circ}C$ for M089 F1. D1; $V_{DD} = 14V$ to 16V unless otherwise specified)

Symbol	Para	meter	Test Conditions	Min.	Тур.	Max.	Unit
Ron*	ON-resistance		$T_{amb} = 25^{\circ}C$ $V_{i(A, B)} = 3.5V$ $V_{DD} = 14V$ $I_{D(min)} = 10mA$		10	15	Ω
ΔR _{ON}	ON-resistance Variation in any Package		$T_{amb} = 25^{\circ}C$ $V_{\parallel} = 3.5V$ $V_{DD} = 14V$ $I_{D} = 10mA$			± 2	%
I _{DD}	Supply Current	, and the second	0=4			7	mA
ILL	Input Leakage	Pins 4, 5, 12, 13	V = 5V			1	μА
		Pins 1. 9	$V_{iA}, V_{iB} = 4.5V$ $V_{O1}, V_{O8} = 1.5V$			0.2	μА
			$V_{1A}, V_{1B} = 6V$ $V_{O1}, V_{O8} = 1.5V$			1	μА
ILO	Output Leakage	Pins 2, 6, 7, 8, 10, 14, 15, 16	V_{O1} , $V_{O8} = 4.5V$ V_{iA} , $V_{iB} = 1.5V$			0.2	μА
			V_{O1} , $V_{O8} = 6V$ V_{iA} , $V_{iB} = 1.5V$			1	μА
V _{low}	Logic 0 Input Level		All Inputs	- 0.3		0.8	V
Vhigh	Logic 1 Input Level		All Inputs	4.5		V _{DD}	V
СТ	Cross-talk Attenuation		See fig. 4	90	95		dB
I _O	Off Isolation		See fig. 5	90	95		dB
f _{CL}	Maximum Clock Input Frequency Lag Time Lead Time					1	MHz
TLG				100			ns
T _{LD1}			C #- 6	400			ns
T _{LD2}			See fig. 6	150			113
T _{WR}	Write Time					3	μs
tw	Clock Pulse Width			0.4		100	μs

^{*} See figure 1 and 2 for R_{ON} variation with temperature and $V_{\text{BIAS}}.$

Figure 1: Ron derating vs. temperature typ.

TEST CIRCUITS

Figure 3: Ron measurement.

Figure 4: Crosstalk Measurements.

Figure 5: Off Isolation Measurement.

TIMING DIAGRAM

Figure 6.

