

FUNCTIONAL DESCRIPTION — The 96S02 and 96LS02 dual retriggerable resettable monostable multivibrators have two dc coupled trigger inputs per function, one active LOW (\overline{I}_0) and one active HIGH(I_1). The I_1 input of both circuit types and the \overline{I}_0 input of the 96LS02 utilize an internal Schmitt trigger with hysteresis of 0.3 V to provide increased noise immunity. The use of active HIGH and LOW inputs allows either rising or falling edge triggering and optional non-retriggerable operation. The inputs are dc coupled making triggering independent of input transition times. When input conditions for triggering are met the Q output goes HIGH and the external capacitor is rapidly discharged and then allowed to recharge. An input trigger which occurs during the timing cycle will retrigger the circuit and result in Q remaining HIGH. The output pulse may be terminated (Q to the LOW state) at any time by setting the Direct Clear input LOW. Retriggering may be inhibited by tying the \overline{Q} output to \overline{I}_0 or the Q output to I_1 . Differential sensing techniques are used to obtain excellent stability over temperature and power supply variations and a feedback Darlington capacitor discharge circuit minimizes pulse width variation from unit to unit. Schottky TTL output stages provide high switching speeds and output compatibility with all TTL logic families.

Operation Notes

TIMING

- 1. An external resistor (R_X) and an external capacitor (C_X) are required as shown in the Logic Diagram. The value of R_X may vary from 1.0 k Ω to 1.0 M Ω (96LS02) or 2.0 M Ω (96S02).
- 2. The value of C_X may vary from 0 to any necessary value available. If, however, the capacitor has significant leakage relative to V_{CC}/R_X the timing equations may not represent the pulse width obtained.
- 3. Polarized capacitors may be used directly. The (+) terminal of a polarized capacitor is connected to pin 1 (15), the (-) terminal to pin 2 (14) and R_X. Pin 1 (15) will remain positive with respect to pin 2 (14) during the timing cycle. In the 96S02, however, during quiescent (non-triggered) conditions, pin 1 (15) may go negative with respect to pin 2 (14) depending on values of R_X and V_{CC}. For values of R_X \ge 10 k Ω the maximum amount of capacitor reverse polarity, pin 1 (15) negative with respect to pin 2 (14) is 500 mV. Most tantalum electrolytic capacitors are rated for safe reverse bias operation up to 5% of their working forward voltage rating; therefore, capacitors having a rating of 10 WVdc or higher should be used with the 96S02 when R_X \ge 10 k Ω .
- 4. The output pulse width t_w for $R_X \ge 10~k\Omega$ and $C_X \ge 1000~pF$ is determined as follows: (96S02) $t_w = 0.55~R_XC_X$ (96LS02) $t_w = 0.43~R_XC_X$
 - Where R_X is in $k\Omega$, C_X is in pF, t is in ns or R_X is in $k\Omega$, C_X is in μ F, t is in ms.
- 5. The output pulse width for $R_X < 10 \text{ k}\Omega$ or $C_X < 1000 \text{ pF}$ should be determined from pulse width versus C_X or R_X graphs.
- 6. To obtain variable pulse width by remote trimming, the following circuit is recommended:

Operation Notes (Cont'd)

- 7. Under any operating condition, C_X and R_X (Min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
- V_{CC} and ground wiring should conform to good high frequency standards so that switching transients on V_{CC} and ground leads do not cause interaction between one shots. Use of a 0.01 μF to 0.1 μF bypass capacitor between V_{CC} and ground located near the circuit is recommended.

TRIGGERING

- 1. The minimum negative pulse width into \overline{I}_0 is 8.0 ns; the minimum positive pulse width into I_1 is 12 ns.
- 2. Input signals to the 96S02 exhibiting slow or noisy transitions should use the positive trigger input I₁ which contains a Schmitt trigger. Input signals to the 96LS02 exhibiting slow or noisy transitions can use either trigger as both are Schmitt triggers.
- 3. When non-retriggerable operation is required, i.e., when input triggers are to be ignored during quasi-stable state, input latching is used to inhibit retriggering.

4. An overriding active LOW level direct clear is provided on each multivibrator. By applying a LOW to the clear, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW. A LOW-to-HIGH transition on \overline{C}_D will not trigger the 96S02 or 96LS02. If the \overline{C}_D input goes HIGH coincident with a trigger transition, the circuit will respond to the trigger.

5 (11)	PIN NO 4 (12)	'S. 3 (13)	OPERATION			
H → L	L	ΗΗL	Trigger			
H	L -+ H		Trigger			
X	X		Reset			

TRIGGERING TRUTH TABLE

 $\textbf{H} = \textbf{HIGH Voltage Level} \geq \textbf{V}_{\textbf{IH}}$

L = LOW Voltage Level \leq V_{IL}

X = Immaterial (either H or L)

H►L = HIGH to LOW Voltage Level transition

LPH = LOW to HIGH Voltage Level transition

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)								
SYMBOL	YMBOL PARAMETER T+ Positive-going Threshold Voltage, To, I1 (96LS02) I1 (96S02)		96S		96LS		LINITS	CONDITIONS
			Min	Max	Min	Max	CINITS	
V _{T+}				2.0		2.0	v	Vcc = 5.0 V
V _{T-}	Negative-going Threshold Voltage Ī ₀ , I ₁ (96LS02) I ₁ (96S02)	XM XC	0.8 0.8		0.7 0.8		v	V _{CC} = 5.0 V
V _{OH}	Output HIGH Voltage	XM XC	2.7 2.7		2.5 2.7		v	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -400 \ \mu \text{A} ('LS02)$ $I_{OH} = -1.0 \ \text{mA} ('S02)$
Vol	Output LOW Voltage	XM XC		0.5 0.5		0.5 0.4	v	$V_{CC} = Min, V_{IN} = V_{IH} \text{ or } V_{IL}$
Vcx	Capacitor Voltage Pin 1 (15) Referenced to Pin 2 (14)		-0.85 -0.5 -0.4	3.0 3.0 3.0	0 0 0	3.0 3.0 3.0	v	$ \begin{array}{l} {\sf R} {\sf x} = 1.0 \; {\sf k} \Omega \\ {\sf R} {\sf x} = > 10 \; {\sf k} \Omega \\ {\sf R} {\sf x} > 1.0 \; {\sf M} \Omega \end{array} {\sf V}_{\rm CC} = 4.75 \; {\sf V} \\ {\sf to} \; 5.25 \; {\sf V} \\ \end{array} $
lн	Input HIGH Current			20		20	μA	$V_{IN} = 2.7 V$ $V_{CC} =$
				0.1		0.1	mA	$V_{IN} = 5.5 V ('S02)$ Max $V_{IN} = 10 V ('LS02)$
lıL	Input LOW Current			-1.0		-0.4	mA	$V_{IN} = 0.4 V$, $V_{CC} = Max$
los	Output Short Circuit Current		-40	-100	-20	-100	mA	Vcc = Max, Vout = 0 V
lcc	Power Supply Current			75		36	mA	V _{IN} = Open, V _{CC} = Max

AC CHARACTERISTICS: V_{CC} = +5.0 V, $T_{A'}$ = +25°C (See Section 3 for waveforms and load configurations)								
		96S		96LS				
SYMBOL	PARAMETER	C _L = 15 pF		CL =	15 pF	UNITS	CONDITIONS	
		Min	Мах	Min	Мах			
tPLH	Propagation Delay \overline{I}_0 to Q		15		55	ns		
tPHL	Propagation Delay \overline{I}_0 to \overline{Q}		19		50	ns		
tpLH	Propagation Delay I1 to Q		19		60	ns		
t PHL	Propagation Delay		20		55	ns	Fig. a	
tphL	Propagation Delay \overline{C}_D to Q		20		30	ns]	
tрLH	Propagation Delay \overline{C}_D to \overline{Q}		14		35	ns		
t _w (L)	I ₀ Pulse Width LOW	8.0		15		ns		
t _w (H)	I1 Pulse Width HIGH	12		30		ns		
t _w (L)	\overline{C}_{D} Pulse Width LOW	7.0		22		ns		
t _w (H)	Minimum Q Pulse Width HIGH	30	45	25	55	ns	$R_X = 1.0 k\Omega$, $C_X = 10 pF$ including jig and stray	
tw	Q Pulse Width	5.2	5.8	4.1	4.5	μS	$R_X = 10 \ k\Omega, \ C_X = 1000 \ pF$	
Rx	Timing Resistor Range*	1.0	2000	1.0	1000	kΩ	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C,$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	
t	Change in Q Pulse Width XM over Temperature XC		1.0		3.0 1.0	%	$R_X = 10 \ k\Omega, \ C_X = 1000 \ pF$	
t	Change in Q Pulse Width over V _{CC} Range		1.0		0.8 1.5	%	$T_{A} = 25^{\circ}C, V_{CC} = 4.75 V to$ 5.25 V, R _X = 10 kΩ, C _X = 1000 pF T _A = 25^{\circ}C, V_{CC} = 4.5 V to 5.5 V, R _X = 10 kΩ, C _X = 1000 pF	

T

*Applies only over commercial V_{CC} and T_A range for 96S02.