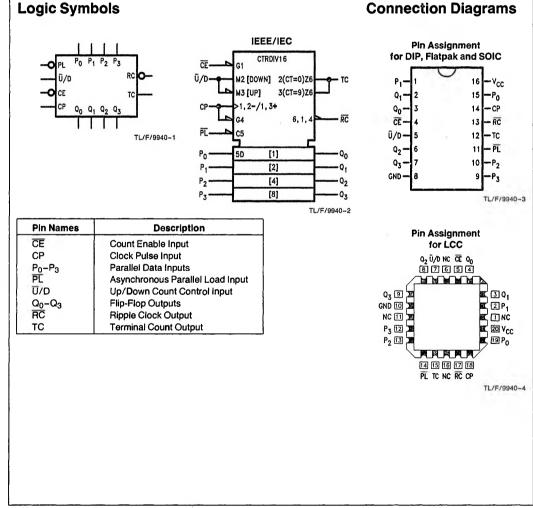


54AC/74AC191 Up/Down Counter with Preset and Ripple Clock


General Description

Ordering Code: See Section 8

The 'AC191 is a reversible modulo 16 binary counter. It features synchronous counting and asynchronous presetting. The preset feature allows the 'AC191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

Features

- High speed—133 MHz typical count frequency
- Synchronous counting
- Asynchronous parallel load
- Cascadable
- Outputs source/sink 24 mA

Functional Description

The 'AC191 is a synchronous up/down counter. The 'AC191 is organized as a 4-bit binary counter. It contains four edge-triggered flip-flops with internal gating and steering logic to provide individual preset, count-up and count-down operations.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (\overline{PL}) input is LOW, information present on the Parallel Load inputs (P_0-P_3) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

A HIGH signal on the \overline{CE} input inhibits counting. When \overline{CE} is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \overline{U}/D input signal, as indicated in the Mode Select Table. \overline{CE} and \overline{U}/D can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.

Two types of outputs are provided as overflow/underflow indicators. The terminal count (TC) output is normally LOW. It goes HIGH when the circuits reach zero in the count down mode or 15 in the count up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until \overline{U}/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple Clock (RC) output. The RC output is normally HIGH. When CE is LOW and TC is HIGH, RC output wil go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figures A and B. In Figure A, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on CE inhibits the RC output pulse, as indicated in the RC Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in *Figure B*. All clock inputs are driven in parallel and the \overline{RC} outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the \overline{RC} output of any device goes HIGH shortly after its CP input goes HIGH.

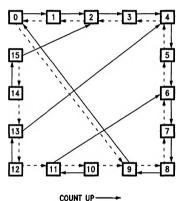
The configuration shown in *Figure C* avoids ripple delays and their associated restrictions. The \overline{CE} input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of *Figures A* and *B* doesn't apply, because the TC output of a given stage is not affected by its own \overline{CE} .

Mode Select Table

	In	puts	Mode			
PL	CE	Ū/D	СР	moue		
н	L	L	1	Count Up		
н	L	н	5	Count Down		
L	х	х	X	Preset (Asyn.)		
н	н	х	X	No Change (Hold)		

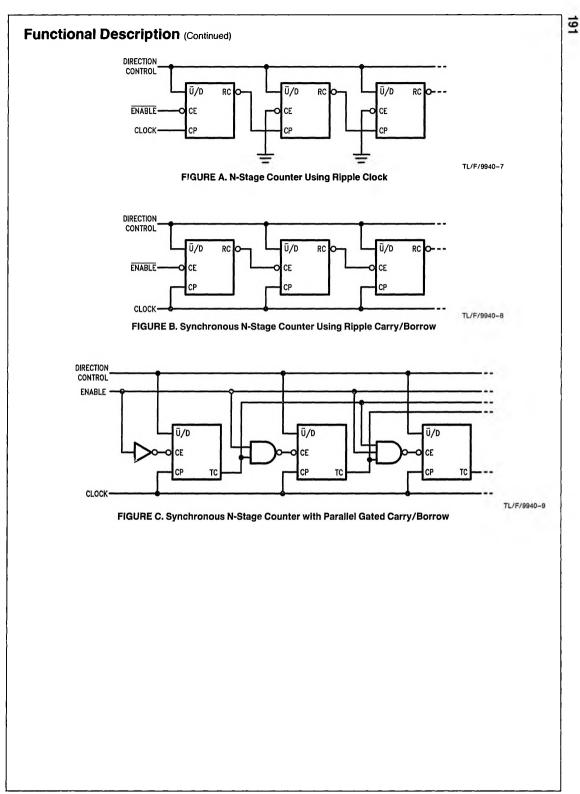
RC Truth Table

	inputs								
PL	ĈĒ	TC*	СР	RC					
н	L	н	L L	ъ					
н	н	х	X	н					
н	X	L	X	н					
L	X	х	X	н					

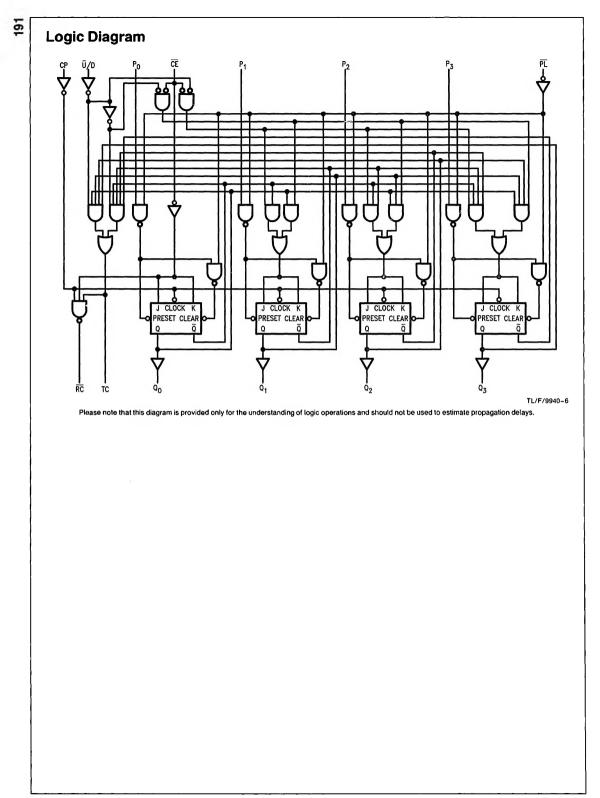

*TC is generated internally

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial


- LOW-to-HIGH Transition

State Diagram



COUNT DOWN ---

TL/F/9940-5

Absolute Maximum Ratings (Note 1)

_

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	20 mA
$V_{\rm I} = V_{\rm CC} + 0.5 V$	+ 20 mA
DC Input Voltage (V _I)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (IOK)	
$V_{O} = -0.5V$	—20 mA
$V_{\rm O} = V_{\rm CC} + 0.5 V$	+ 20 mA
DC Output Voltage (V _O)	$-0.5V$ to to V_{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	± 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T,)	
CDIP	175°C
PDIP	140°C
Note 1: Absolute maximum ratings are tho	se values bevond which damage

e ma to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. National does not recommend operation of FACTTM circuits outside databook specifications.

DC Characteristics for 'AC Family Devices

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V ₁)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A) 74AC/ACT 54AC/ACT	−40°C to +85°C −55°C to +125°C
$\begin{array}{l} \mbox{Minimum Input Edge Rate } (\Delta V/\Delta t) \\ \ ^{\prime}\mbox{AC Devices} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	125 mV/ns
Minimum Input Edge Rate ($\Delta V/\Delta t$) 'ACT Devices V _{IN} from 0.8V to 2.0V V _{CC} @ 4.5V, 5.5V	125 mV/ns
100 0 4.01, 0.01	.20 1147113

	Parameter				54AC	74AC		
Symbol		V _{CC} (∀)			T _A = -55°C to + 125°C	n n		Conditions
			Тур		Guaranteed Lir	nits		
V _{IH} Minimum High Level Input Voltage		3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	2.1 3.15 3.85	v	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	0.9 1.35 1.65	v	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	2.9 4.4 5.4	v	I _{OUT} = -50 μA
		3.0 4.5 5.5		2.56 3.86 4.86	2.4 3.7 4.7	2.46 3.76 4.76	v	*V _{IN} = V _{IL} or V _{IH} - 12 mA I _{OH} - 24 mA - 24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	v	I _{OUT} = 50 μA
		3.0 4.5 5.5		0.36 0.36 0.36	0.50 0.50 0.50	0.44 0.44 0.44	v	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	±1.0	μΑ	$V_{I} = V_{CC}, GND$

out assoc on i it under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

DC Characteristics for 'AC Family Devices (Continued)

			74AC		54AC	74AC			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -55°C to +125°C	T _A = -40°C to +85°C	Units	Conditions	
			Тур		Guaranteed Li	mits			
IOLD	†Minimum Dynamic	5.5			50	75	mA	$V_{OLD} = 1.65V Max$	
IOHD	Output Current	5.5			-50	- 75	mA	V _{OHD} = 3.85V Min	
ICC	Maximum Quiescent Supply Current	5.5		8.0	160.0	80.0	μΑ	V _{IN} = V _{CC} or GND	

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

191

Note: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}. I_{CC} for 54AC @ 25°C is identical to 74AC @ 25°C.

AC Electrical Characteristics: See Section 2 for waveforms

			1	74AC		54	AC	74	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			$T_{A} = -55^{\circ}C$ to + 125^{\circ}C C_{L} = 50 pF		$T_{A} = -40^{\circ}C$ to + 85^{\circ}C C_{L} = 50 pF		Units	Fig. No.
			Min	Тур	Max	Min	Max	Min	Max		
f _{max}	Maximum Count Frequency	3.3 5.0	70 90	105 133		55 80		65 85		MHz	
t _{PLH}	Propagation Delay CP to Q _n	3.3 5.0	2.0 1.5	8.5 6.0	15.0 11.0	1.0 1.0	16.5 12.0	1.5 1.5	16.0 12.0	ns	2-3,
t _{PHL}	Propagation Delay CP to Q _n	3.3 5.0	2.5 1.5	8.5 6.0	14.5 10.5	1.0 1.0	16.0 12.0	2.0 1.5	16.0 11.5	ns	2-3,
t _{PLH}	Propagation Delay CP to TC	3.3 5.0	3.5 2.5	10.5 7.5	18.0 12.0	1.0 1.0	19.5 14.0	2.5 1.5	20.0 14.0	ns	2-3,
^t PHL	Propagation Delay CP to TC	3.3 5.0	4.0 2.5	10.5 7.5	17.5 12.5	1.0 1.0	19.0 14.5	3.0 2.0	19.0 13.5	ns	2-3,
t _{PLH}	Propagation Delay CP to RC	3.3 5.0	2.5 2.0	7.5 5.5	12.0 9.5	1.0 1.0	14.0 10.5	2.0 1.0	13.5 10.5	ns	2-3,
t _{PHL}	Propagation Delay CP to RC	3.3 5.0	2.5 1.5	7.0 5.0	11.5 8.5	1.0 1.0	12.5 9.5	2.0 1.0	12.5 9.5	ns	2-3,
t _{PLH}	Propagation Delay CE to RC	3.3 5.0	2.5 1.5	7.0 5.0	12.0 8.5	1.0 1.0	14.0 10.0	1.5 1.0	13.5 9.5	ns	2-3,
t _{PHL}	Propagation Delay CE to RC	3.3 5.0	2.0 1.5	6.5 5.0	11.0 8.0	1.0 1.0	12.5 9.5	1.5 1.0	12.5 9.0	ns	2-3,
t _{PLH}	Propagation Delay U/D to RC	3.3 5.0	2.5 1.5	6.5 5.0	12.5 9.0	1.0 1.0	14.5 11.0	2.0 1.0	14.5 10.0	ns	2-3,
t _{PHL}	Propagation Delay \overline{U}/D to RC	3.3 5.0	2.5 1.5	7.0 5.0	12.0 8.5	1.0 1.0	15.0 11.0	2.0 1.0	13.5 10.0	ns	2-3,
t _{PLH}	Propagation Delay U/D to TC	3.3 5.0	2.0 1.5	7.0 5.0	11.5 8.5	1.0 1.0	14.0 13.5	1.5 1.0	13.5 9.5	ns	2-3,
tPHL	Propagation Delay U/D to TC	3.3 5.0	2.0 1.5	6.5 5.0	11.0 8.5	1.0 1.0	13.5 10.0	1.5 1.0	12.5 9.5	ns	2-3,
t _{PLH}	Propagation Delay Pn to Qn	3.3 5.0	2.5 2.0	8.0 5.5	13.5 9.5	1.0 1.0	16.5 11.5	2.0 1.0	15.5 10.5	ns	2-3

*Voltage Range 3.3 is 3.3V ±0.3V Voltage Range 5.0 is 5.0V ±0.5V

AC Electrical Characteristics: See Section 2 for waveforms (Continued)

					AC	$74AC$ $T_A = -40°C$ $to +85°C$ $C_L = 50 \text{ pF}$			Fig. No.		
Symbol	Parameter	V _{CC} * (V)			to + 125°C			Units			
			Min	Тур	Max	Min	Max	Min	Max	7	
t _{PHL}	Propagation Delay P_n to Q_n	3.3 5.0	2.5 1.5	7.5 5.5	13.0 9.5	1.0 1.0	15.5 10.5	1.5 1.0	14.5 10.5	ns	2-3,4
^t PLH	Propagation Delay PL to Q _n	3.3 5.0	3.5 2.0	9.5 5.5	14.5 9.5	1.0 1.0	18.0 12.5	2.5 1.0	17.5 10.5	ns	2-3,4
^t PHL	Propagation Delay PL to Q _n	3.3 5.0	3.0 2.0	8.0 6.0	13.5 10.0	1.0 1.0	15.5 11.5	2.0 1.5	15.5 11.0	ns	2-3,4

*Voltage Range 3.3 is 3.3V ±0.3V Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements: See Section 2 for waveforms

			74	AC	54AC	74AC		
Symbol	Parameter	V _{CC} * (V)			$T_{A} = -55^{\circ}C$ to + 125^{C} C_{L} = 50 pF	$T_{A} = -40^{\circ}C$ to +85^{\circ}C C_{L} = 50 pF	Units	Fig. No.
			Тур		Guaranteed Min	imum]	1
t _s	Setup Time, HIGH or LOW Pn to PL	3.3 5.0	1.0 0.5	3.0 2.0	4.0 3.0	3.0 2.5	ns	2-7
t _h	Hold Time, HIGH or LOW P_n to \overline{PL}	3.3 5.0	-1.5 -0.5	0.5 1.0	1.5 2.0	1.0 1.0	ns	2-7
t _s	Setup Time, LOW CE to CP	3.3 5.0	3.0 1.5	6.0 4.0	9.0 6.0	7.0 4.5	ns	2-7
t _h	Hold Time, LOW CE to CP	3.3 5.0	-4.0 -2.5	-0.5 0	0 0.5	-0.5 0	ns	2-7
t _s	Setup Time, HIGH or LOW \overline{U}/D to CP	3.3 5.0	4.0 2.5	8.0 5.5	10.5 7.5	9.0 6.5	ns	2-7
t _h	Hold Time, HIGH or LOW U/D to CP	3.3 5.0	-5.0 -3.0	0 0.5	0 1.0	0 0.5	ns	2-7
tw	PL Pulse Width, LOW	3.3 5.0	2.0 1.0	3.5 1.0	5.0 5.0	4.0 1.0	ns	2-3
t _w	CP Pulse Width, LOW	3.3 5.0	2.0 2.0	3.5 3.0	6.0 6.0	4.0 4.0	ns	2-3
t _{rec}	Recovery Time PL to CP	3.3 5.0	-0.5 -1.0	0 0	1.5 1.0	0 0	ns	2-3,7

*Voltage Range 3.3 is 3.3V \pm 0.3V Voltage Range 5.0 is 5.0V \pm 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	75.0	pF	$V_{\rm CC} = 5.0 V$

191