14 A* c 13 A2 12 A1 10 Σ 9 Σ 8 Cn+1 11 GND # **54/7480**GATED FULL ADDER **DESCRIPTION** — The '80 is a single-bit, high speed, binary full adder with gated complementary inputs, complementary sum (Σ and $\overline{\Sigma}$) outputs and inverted carry output. It is designed for medium and high speed, multiple-bit, parallel-add/serial carry applications. The circuit utilizes DTL for the gated inputs and high speed, high fan-out TTL for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high speed, Darlingtion-connected serial-carry circuit minimizes the necessity for extensive "lookahead" and carry-cascading circuits. **ORDERING CODE:** See Section 9 | | PIN | COMMERCIAL GRADE | MILITARY GRADE | PKG | |--------------------|-----|---|---|------------| | PKGS | оит | $V_{CC} = +5.0 \text{ V} \pm 5\%,$
$T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ | $V_{CC} = +5.0 \text{ V} \pm 10\%,$
$T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$ | TYPE | | Plastic
DIP (P) | Α | 7480PC | | 9 A | | Ceramic
DIP (D) | Α | 7480DC | 5480DM | 6A | | Flatpak
(F) | В | 7480FC | 5480FM | 31 | # LOGIC SYMBOL Ac 1 Vcc 4 #### INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions | PIN NAMES | DESCRIPTION | 54/74 (U.L.)
HIGH/LOW | |---|-------------------------|---------------------------------| | A ₁ , A ₂ , B ₁ , B ₂ | Operand Inputs | 0.4/1.0 | | A*, B* | Inverted Operand Inputs | -/1.63 | | Ac, Bc | Control Inputs | 0.4/1.0 | | Cn | Carry Input | 5.0/5.0 | | Cn
Cn <u>+</u> 1 | Inverted Carry Output | 5.0/5.0 | | $\Sigma, \overline{\Sigma}$ | Sum Outputs | 10/10 | | A*, B* | When Used As Outputs | 3.0/3.0 | #### **TRUTH TABLE** | INPUTS | | | OUTPUTS | | | | |-------------|-------------|------|-------------|------------------|------------------|--| | Cn | В | Α | Cn + 1 | Σ | Σ | | | L L L | LHH | LHLH | H H L | HLLH | L
H
H
L | | | H
H
H | L
H
H | LHLH | H
L
L | L
H
H
L | H
L
L | | #### NOTES: - (1) $A = \overline{A^{\bullet} \bullet A_{C}}$, $B = \overline{B^{\bullet} \bullet B_{C}}$ where $\overline{A_{1} \bullet A_{2}}$. $B^{\bullet} = \overline{B_{1} \bullet B_{2}}$ - (2) When A* or B* are used as inputs, A₁ and A₂ or B₁ and B₂ respectively must be connected to Gnd. - (3) When A₁ and A₂ or B₁ and B₂ are used as inputs, A* or B* respectively must be open or used to perform Dot-OR logic. # LOGIC DIAGRAM ## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unlsess otherwise specified) | SYMBOL | PARAMETER | | 54/74 | | UNITS | CONDITIONS | |--------|---|----------|--------------|--------------|--------------|-----------------------| | 01202 | | Min | Min Max | | 001131110110 | | | los | Output Short Circuit
Current at \overline{C}_{n+1} | XM
XC | -20
-18 | -70
-70 | mA | V _{CC} = Max | | los | Output Short Circuit
Current at A*, B* | XM | -0.9
-0.9 | -2.9
-2.9 | mA | V _{CC} = Max | | lcc | Power Supply Current | XM | | 31
35 | mA | V _{CC} = Max | ## AC CHARACTERISTICS: V_{CC} = +5.0 V, T_A = +25° C (See Section 3 for waveforms and load configurations) | SYMBOL | | 54 | 54/74 C _L = 15 pF | | CONDITIONS | |--------------|--|------------------|-------------------------------------|----|---| | | PARAMETER | C _L = | | | | | | | Min | Max | | | | tPLH
tPHL | Propagation Delay C_n to \overline{C}_{n+1} | | 17
12 | ns | Figs. 3-1, 3-4
R _L = 780 Ω | | tPLH
tPHL | Propagation Delay
BC to Cn + 1 | | 25
55 | ns | Figs. 3-1, 3-5 $R_L = 780 \Omega$ | | tPLH
tPHL | Propagation Delay
Ac to Σ | | 70
80 | ns | Figs. 3-1, 3-4 $R_L = 400 \Omega$ | | tPLH
tPHL | Propagation Delay B_C to $\overline{\Sigma}$ | | 55
75 | ns | Figs. 3-1, 3-5
R _L = 400 Ω | | tpLH
tpHL | Propagation Delay A ₁ to A* or B ₁ to B* | | 65
25 | ns | Figs. 3-1, 3-4
R∟ not used |